Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading From Remote-Sensing Data
Predicting wildfire spread is critical for land management and disaster preparedness. To this end, we present "Next Day Wildfire Spread," a curated, large-scale, multivariate dataset of historical wildfires aggregating nearly a decade of remote-sensing data across the United States. In con...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-13 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Huot, Fantine Hu, R. Lily Goyal, Nita Sankar, Tharun Ihme, Matthias Chen, Yi-Fan |
description | Predicting wildfire spread is critical for land management and disaster preparedness. To this end, we present "Next Day Wildfire Spread," a curated, large-scale, multivariate dataset of historical wildfires aggregating nearly a decade of remote-sensing data across the United States. In contrast to existing fire datasets based on Earth observation satellites, our dataset combines 2-D fire data with multiple explanatory variables (e.g., topography, vegetation, weather, drought index, and population density) aligned over 2-D regions, providing a feature-rich dataset for machine learning. To demonstrate the usefulness of this dataset, we implement a neural network that takes advantage of the spatial information of these data to predict wildfire spread. We compare the performance of the neural network with other machine learning models: logistic regression and random forest. This dataset can be used as a benchmark for developing wildfire propagation models based on remote-sensing data for a lead time of one day. |
doi_str_mv | 10.1109/TGRS.2022.3192974 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9840400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9840400</ieee_id><sourcerecordid>2700411958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-d4b885144b8d71e30b13d80144beb89adda55d4ddf748d51f7112e24c29a252e3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQQIMoWKs_QLwEPG_NZJNu4q2orUL9oK14DOlmVre2uzVJwf57d2n14GlgeG8GHiHnwHoATF_NRpNpjzPOeylorjNxQDogpUpYX4hD0mGg-wlXmh-TkxAWjIGQkHXI5xN-R3prt_StXLqi9Eina4_WXdMBfbT5R1khHaP1VVm9N1y0ASONNX3x6Mo8_tdaaujrFZ3gqo6YTLEKv-YpOSrsMuDZfnbJ6_BudnOfjJ9HDzeDcZILxmPixFwpCaIZLgNM2RxSp1i7wLnS1jkrpRPOFZlQTkKRAXDkIufacskx7ZLL3d21r782GKJZ1BtfNS8NzxgTAFqqhoIdlfs6BI-FWftyZf3WADNtU9M2NW1Ts2_aOBc7p0TEP14rwQRj6Q813XHu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700411958</pqid></control><display><type>article</type><title>Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading From Remote-Sensing Data</title><source>IEEE Electronic Library (IEL)</source><creator>Huot, Fantine ; Hu, R. Lily ; Goyal, Nita ; Sankar, Tharun ; Ihme, Matthias ; Chen, Yi-Fan</creator><creatorcontrib>Huot, Fantine ; Hu, R. Lily ; Goyal, Nita ; Sankar, Tharun ; Ihme, Matthias ; Chen, Yi-Fan</creatorcontrib><description>Predicting wildfire spread is critical for land management and disaster preparedness. To this end, we present "Next Day Wildfire Spread," a curated, large-scale, multivariate dataset of historical wildfires aggregating nearly a decade of remote-sensing data across the United States. In contrast to existing fire datasets based on Earth observation satellites, our dataset combines 2-D fire data with multiple explanatory variables (e.g., topography, vegetation, weather, drought index, and population density) aligned over 2-D regions, providing a feature-rich dataset for machine learning. To demonstrate the usefulness of this dataset, we implement a neural network that takes advantage of the spatial information of these data to predict wildfire spread. We compare the performance of the neural network with other machine learning models: logistic regression and random forest. This dataset can be used as a benchmark for developing wildfire propagation models based on remote-sensing data for a lead time of one day.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3192974</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data models ; Datasets ; Disaster management ; Drought ; Drought index ; Earth Engine ; Emergency preparedness ; Indexes ; Land management ; Lead time ; Learning algorithms ; Machine learning ; Neural networks ; Population density ; Regression analysis ; Remote sensing ; Satellite observation ; Sociology ; Soft sensors ; Spatial data ; Statistics ; Vegetation mapping ; wildfire ; Wildfires</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-d4b885144b8d71e30b13d80144beb89adda55d4ddf748d51f7112e24c29a252e3</citedby><cites>FETCH-LOGICAL-c402t-d4b885144b8d71e30b13d80144beb89adda55d4ddf748d51f7112e24c29a252e3</cites><orcidid>0000-0002-1674-8852 ; 0000-0002-0557-0972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9840400$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Huot, Fantine</creatorcontrib><creatorcontrib>Hu, R. Lily</creatorcontrib><creatorcontrib>Goyal, Nita</creatorcontrib><creatorcontrib>Sankar, Tharun</creatorcontrib><creatorcontrib>Ihme, Matthias</creatorcontrib><creatorcontrib>Chen, Yi-Fan</creatorcontrib><title>Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading From Remote-Sensing Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Predicting wildfire spread is critical for land management and disaster preparedness. To this end, we present "Next Day Wildfire Spread," a curated, large-scale, multivariate dataset of historical wildfires aggregating nearly a decade of remote-sensing data across the United States. In contrast to existing fire datasets based on Earth observation satellites, our dataset combines 2-D fire data with multiple explanatory variables (e.g., topography, vegetation, weather, drought index, and population density) aligned over 2-D regions, providing a feature-rich dataset for machine learning. To demonstrate the usefulness of this dataset, we implement a neural network that takes advantage of the spatial information of these data to predict wildfire spread. We compare the performance of the neural network with other machine learning models: logistic regression and random forest. This dataset can be used as a benchmark for developing wildfire propagation models based on remote-sensing data for a lead time of one day.</description><subject>Data models</subject><subject>Datasets</subject><subject>Disaster management</subject><subject>Drought</subject><subject>Drought index</subject><subject>Earth Engine</subject><subject>Emergency preparedness</subject><subject>Indexes</subject><subject>Land management</subject><subject>Lead time</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Population density</subject><subject>Regression analysis</subject><subject>Remote sensing</subject><subject>Satellite observation</subject><subject>Sociology</subject><subject>Soft sensors</subject><subject>Spatial data</subject><subject>Statistics</subject><subject>Vegetation mapping</subject><subject>wildfire</subject><subject>Wildfires</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQQIMoWKs_QLwEPG_NZJNu4q2orUL9oK14DOlmVre2uzVJwf57d2n14GlgeG8GHiHnwHoATF_NRpNpjzPOeylorjNxQDogpUpYX4hD0mGg-wlXmh-TkxAWjIGQkHXI5xN-R3prt_StXLqi9Eina4_WXdMBfbT5R1khHaP1VVm9N1y0ASONNX3x6Mo8_tdaaujrFZ3gqo6YTLEKv-YpOSrsMuDZfnbJ6_BudnOfjJ9HDzeDcZILxmPixFwpCaIZLgNM2RxSp1i7wLnS1jkrpRPOFZlQTkKRAXDkIufacskx7ZLL3d21r782GKJZ1BtfNS8NzxgTAFqqhoIdlfs6BI-FWftyZf3WADNtU9M2NW1Ts2_aOBc7p0TEP14rwQRj6Q813XHu</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Huot, Fantine</creator><creator>Hu, R. Lily</creator><creator>Goyal, Nita</creator><creator>Sankar, Tharun</creator><creator>Ihme, Matthias</creator><creator>Chen, Yi-Fan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1674-8852</orcidid><orcidid>https://orcid.org/0000-0002-0557-0972</orcidid></search><sort><creationdate>2022</creationdate><title>Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading From Remote-Sensing Data</title><author>Huot, Fantine ; Hu, R. Lily ; Goyal, Nita ; Sankar, Tharun ; Ihme, Matthias ; Chen, Yi-Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-d4b885144b8d71e30b13d80144beb89adda55d4ddf748d51f7112e24c29a252e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data models</topic><topic>Datasets</topic><topic>Disaster management</topic><topic>Drought</topic><topic>Drought index</topic><topic>Earth Engine</topic><topic>Emergency preparedness</topic><topic>Indexes</topic><topic>Land management</topic><topic>Lead time</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Population density</topic><topic>Regression analysis</topic><topic>Remote sensing</topic><topic>Satellite observation</topic><topic>Sociology</topic><topic>Soft sensors</topic><topic>Spatial data</topic><topic>Statistics</topic><topic>Vegetation mapping</topic><topic>wildfire</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huot, Fantine</creatorcontrib><creatorcontrib>Hu, R. Lily</creatorcontrib><creatorcontrib>Goyal, Nita</creatorcontrib><creatorcontrib>Sankar, Tharun</creatorcontrib><creatorcontrib>Ihme, Matthias</creatorcontrib><creatorcontrib>Chen, Yi-Fan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huot, Fantine</au><au>Hu, R. Lily</au><au>Goyal, Nita</au><au>Sankar, Tharun</au><au>Ihme, Matthias</au><au>Chen, Yi-Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading From Remote-Sensing Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Predicting wildfire spread is critical for land management and disaster preparedness. To this end, we present "Next Day Wildfire Spread," a curated, large-scale, multivariate dataset of historical wildfires aggregating nearly a decade of remote-sensing data across the United States. In contrast to existing fire datasets based on Earth observation satellites, our dataset combines 2-D fire data with multiple explanatory variables (e.g., topography, vegetation, weather, drought index, and population density) aligned over 2-D regions, providing a feature-rich dataset for machine learning. To demonstrate the usefulness of this dataset, we implement a neural network that takes advantage of the spatial information of these data to predict wildfire spread. We compare the performance of the neural network with other machine learning models: logistic regression and random forest. This dataset can be used as a benchmark for developing wildfire propagation models based on remote-sensing data for a lead time of one day.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3192974</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1674-8852</orcidid><orcidid>https://orcid.org/0000-0002-0557-0972</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_9840400 |
source | IEEE Electronic Library (IEL) |
subjects | Data models Datasets Disaster management Drought Drought index Earth Engine Emergency preparedness Indexes Land management Lead time Learning algorithms Machine learning Neural networks Population density Regression analysis Remote sensing Satellite observation Sociology Soft sensors Spatial data Statistics Vegetation mapping wildfire Wildfires |
title | Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading From Remote-Sensing Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Next%20Day%20Wildfire%20Spread:%20A%20Machine%20Learning%20Dataset%20to%20Predict%20Wildfire%20Spreading%20From%20Remote-Sensing%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Huot,%20Fantine&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3192974&rft_dat=%3Cproquest_ieee_%3E2700411958%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700411958&rft_id=info:pmid/&rft_ieee_id=9840400&rfr_iscdi=true |