Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading From Remote-Sensing Data

Predicting wildfire spread is critical for land management and disaster preparedness. To this end, we present "Next Day Wildfire Spread," a curated, large-scale, multivariate dataset of historical wildfires aggregating nearly a decade of remote-sensing data across the United States. In con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-13
Hauptverfasser: Huot, Fantine, Hu, R. Lily, Goyal, Nita, Sankar, Tharun, Ihme, Matthias, Chen, Yi-Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Huot, Fantine
Hu, R. Lily
Goyal, Nita
Sankar, Tharun
Ihme, Matthias
Chen, Yi-Fan
description Predicting wildfire spread is critical for land management and disaster preparedness. To this end, we present "Next Day Wildfire Spread," a curated, large-scale, multivariate dataset of historical wildfires aggregating nearly a decade of remote-sensing data across the United States. In contrast to existing fire datasets based on Earth observation satellites, our dataset combines 2-D fire data with multiple explanatory variables (e.g., topography, vegetation, weather, drought index, and population density) aligned over 2-D regions, providing a feature-rich dataset for machine learning. To demonstrate the usefulness of this dataset, we implement a neural network that takes advantage of the spatial information of these data to predict wildfire spread. We compare the performance of the neural network with other machine learning models: logistic regression and random forest. This dataset can be used as a benchmark for developing wildfire propagation models based on remote-sensing data for a lead time of one day.
doi_str_mv 10.1109/TGRS.2022.3192974
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9840400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9840400</ieee_id><sourcerecordid>2700411958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-d4b885144b8d71e30b13d80144beb89adda55d4ddf748d51f7112e24c29a252e3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQQIMoWKs_QLwEPG_NZJNu4q2orUL9oK14DOlmVre2uzVJwf57d2n14GlgeG8GHiHnwHoATF_NRpNpjzPOeylorjNxQDogpUpYX4hD0mGg-wlXmh-TkxAWjIGQkHXI5xN-R3prt_StXLqi9Eina4_WXdMBfbT5R1khHaP1VVm9N1y0ASONNX3x6Mo8_tdaaujrFZ3gqo6YTLEKv-YpOSrsMuDZfnbJ6_BudnOfjJ9HDzeDcZILxmPixFwpCaIZLgNM2RxSp1i7wLnS1jkrpRPOFZlQTkKRAXDkIufacskx7ZLL3d21r782GKJZ1BtfNS8NzxgTAFqqhoIdlfs6BI-FWftyZf3WADNtU9M2NW1Ts2_aOBc7p0TEP14rwQRj6Q813XHu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700411958</pqid></control><display><type>article</type><title>Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading From Remote-Sensing Data</title><source>IEEE Electronic Library (IEL)</source><creator>Huot, Fantine ; Hu, R. Lily ; Goyal, Nita ; Sankar, Tharun ; Ihme, Matthias ; Chen, Yi-Fan</creator><creatorcontrib>Huot, Fantine ; Hu, R. Lily ; Goyal, Nita ; Sankar, Tharun ; Ihme, Matthias ; Chen, Yi-Fan</creatorcontrib><description>Predicting wildfire spread is critical for land management and disaster preparedness. To this end, we present "Next Day Wildfire Spread," a curated, large-scale, multivariate dataset of historical wildfires aggregating nearly a decade of remote-sensing data across the United States. In contrast to existing fire datasets based on Earth observation satellites, our dataset combines 2-D fire data with multiple explanatory variables (e.g., topography, vegetation, weather, drought index, and population density) aligned over 2-D regions, providing a feature-rich dataset for machine learning. To demonstrate the usefulness of this dataset, we implement a neural network that takes advantage of the spatial information of these data to predict wildfire spread. We compare the performance of the neural network with other machine learning models: logistic regression and random forest. This dataset can be used as a benchmark for developing wildfire propagation models based on remote-sensing data for a lead time of one day.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3192974</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data models ; Datasets ; Disaster management ; Drought ; Drought index ; Earth Engine ; Emergency preparedness ; Indexes ; Land management ; Lead time ; Learning algorithms ; Machine learning ; Neural networks ; Population density ; Regression analysis ; Remote sensing ; Satellite observation ; Sociology ; Soft sensors ; Spatial data ; Statistics ; Vegetation mapping ; wildfire ; Wildfires</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-d4b885144b8d71e30b13d80144beb89adda55d4ddf748d51f7112e24c29a252e3</citedby><cites>FETCH-LOGICAL-c402t-d4b885144b8d71e30b13d80144beb89adda55d4ddf748d51f7112e24c29a252e3</cites><orcidid>0000-0002-1674-8852 ; 0000-0002-0557-0972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9840400$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Huot, Fantine</creatorcontrib><creatorcontrib>Hu, R. Lily</creatorcontrib><creatorcontrib>Goyal, Nita</creatorcontrib><creatorcontrib>Sankar, Tharun</creatorcontrib><creatorcontrib>Ihme, Matthias</creatorcontrib><creatorcontrib>Chen, Yi-Fan</creatorcontrib><title>Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading From Remote-Sensing Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Predicting wildfire spread is critical for land management and disaster preparedness. To this end, we present "Next Day Wildfire Spread," a curated, large-scale, multivariate dataset of historical wildfires aggregating nearly a decade of remote-sensing data across the United States. In contrast to existing fire datasets based on Earth observation satellites, our dataset combines 2-D fire data with multiple explanatory variables (e.g., topography, vegetation, weather, drought index, and population density) aligned over 2-D regions, providing a feature-rich dataset for machine learning. To demonstrate the usefulness of this dataset, we implement a neural network that takes advantage of the spatial information of these data to predict wildfire spread. We compare the performance of the neural network with other machine learning models: logistic regression and random forest. This dataset can be used as a benchmark for developing wildfire propagation models based on remote-sensing data for a lead time of one day.</description><subject>Data models</subject><subject>Datasets</subject><subject>Disaster management</subject><subject>Drought</subject><subject>Drought index</subject><subject>Earth Engine</subject><subject>Emergency preparedness</subject><subject>Indexes</subject><subject>Land management</subject><subject>Lead time</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Population density</subject><subject>Regression analysis</subject><subject>Remote sensing</subject><subject>Satellite observation</subject><subject>Sociology</subject><subject>Soft sensors</subject><subject>Spatial data</subject><subject>Statistics</subject><subject>Vegetation mapping</subject><subject>wildfire</subject><subject>Wildfires</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQQIMoWKs_QLwEPG_NZJNu4q2orUL9oK14DOlmVre2uzVJwf57d2n14GlgeG8GHiHnwHoATF_NRpNpjzPOeylorjNxQDogpUpYX4hD0mGg-wlXmh-TkxAWjIGQkHXI5xN-R3prt_StXLqi9Eina4_WXdMBfbT5R1khHaP1VVm9N1y0ASONNX3x6Mo8_tdaaujrFZ3gqo6YTLEKv-YpOSrsMuDZfnbJ6_BudnOfjJ9HDzeDcZILxmPixFwpCaIZLgNM2RxSp1i7wLnS1jkrpRPOFZlQTkKRAXDkIufacskx7ZLL3d21r782GKJZ1BtfNS8NzxgTAFqqhoIdlfs6BI-FWftyZf3WADNtU9M2NW1Ts2_aOBc7p0TEP14rwQRj6Q813XHu</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Huot, Fantine</creator><creator>Hu, R. Lily</creator><creator>Goyal, Nita</creator><creator>Sankar, Tharun</creator><creator>Ihme, Matthias</creator><creator>Chen, Yi-Fan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1674-8852</orcidid><orcidid>https://orcid.org/0000-0002-0557-0972</orcidid></search><sort><creationdate>2022</creationdate><title>Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading From Remote-Sensing Data</title><author>Huot, Fantine ; Hu, R. Lily ; Goyal, Nita ; Sankar, Tharun ; Ihme, Matthias ; Chen, Yi-Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-d4b885144b8d71e30b13d80144beb89adda55d4ddf748d51f7112e24c29a252e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data models</topic><topic>Datasets</topic><topic>Disaster management</topic><topic>Drought</topic><topic>Drought index</topic><topic>Earth Engine</topic><topic>Emergency preparedness</topic><topic>Indexes</topic><topic>Land management</topic><topic>Lead time</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Population density</topic><topic>Regression analysis</topic><topic>Remote sensing</topic><topic>Satellite observation</topic><topic>Sociology</topic><topic>Soft sensors</topic><topic>Spatial data</topic><topic>Statistics</topic><topic>Vegetation mapping</topic><topic>wildfire</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huot, Fantine</creatorcontrib><creatorcontrib>Hu, R. Lily</creatorcontrib><creatorcontrib>Goyal, Nita</creatorcontrib><creatorcontrib>Sankar, Tharun</creatorcontrib><creatorcontrib>Ihme, Matthias</creatorcontrib><creatorcontrib>Chen, Yi-Fan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huot, Fantine</au><au>Hu, R. Lily</au><au>Goyal, Nita</au><au>Sankar, Tharun</au><au>Ihme, Matthias</au><au>Chen, Yi-Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading From Remote-Sensing Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Predicting wildfire spread is critical for land management and disaster preparedness. To this end, we present "Next Day Wildfire Spread," a curated, large-scale, multivariate dataset of historical wildfires aggregating nearly a decade of remote-sensing data across the United States. In contrast to existing fire datasets based on Earth observation satellites, our dataset combines 2-D fire data with multiple explanatory variables (e.g., topography, vegetation, weather, drought index, and population density) aligned over 2-D regions, providing a feature-rich dataset for machine learning. To demonstrate the usefulness of this dataset, we implement a neural network that takes advantage of the spatial information of these data to predict wildfire spread. We compare the performance of the neural network with other machine learning models: logistic regression and random forest. This dataset can be used as a benchmark for developing wildfire propagation models based on remote-sensing data for a lead time of one day.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3192974</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1674-8852</orcidid><orcidid>https://orcid.org/0000-0002-0557-0972</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_9840400
source IEEE Electronic Library (IEL)
subjects Data models
Datasets
Disaster management
Drought
Drought index
Earth Engine
Emergency preparedness
Indexes
Land management
Lead time
Learning algorithms
Machine learning
Neural networks
Population density
Regression analysis
Remote sensing
Satellite observation
Sociology
Soft sensors
Spatial data
Statistics
Vegetation mapping
wildfire
Wildfires
title Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading From Remote-Sensing Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Next%20Day%20Wildfire%20Spread:%20A%20Machine%20Learning%20Dataset%20to%20Predict%20Wildfire%20Spreading%20From%20Remote-Sensing%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Huot,%20Fantine&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3192974&rft_dat=%3Cproquest_ieee_%3E2700411958%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700411958&rft_id=info:pmid/&rft_ieee_id=9840400&rfr_iscdi=true