Breast Cancer Diagnosis in Two-View Mammography Using End-to-End Trained EfficientNet-Based Convolutional Network
Some recent studies have described deep convolutional neural networks to diagnose breast cancer in mammograms with similar or even superior performance to that of human experts. One of the best techniques does two transfer learnings: the first uses a model trained on natural images to create a "...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.77723-77731 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77731 |
---|---|
container_issue | |
container_start_page | 77723 |
container_title | IEEE access |
container_volume | 10 |
creator | Petrini, Daniel G. P. Shimizu, Carlos Roela, Rosimeire A. Valente, Gabriel Vansuita Folgueira, Maria Aparecida Azevedo Koike Kim, Hae Yong |
description | Some recent studies have described deep convolutional neural networks to diagnose breast cancer in mammograms with similar or even superior performance to that of human experts. One of the best techniques does two transfer learnings: the first uses a model trained on natural images to create a "patch classifier" that categorizes small subimages; the second uses the patch classifier to scan the whole mammogram and create the "single-view whole-image classifier". We propose to make a third transfer learning to obtain a "two-view classifier" to use the two mammographic views: bilateral craniocaudal and mediolateral oblique. We use EfficientNet as the basis of our model. We "end-to-end" train the entire system using CBIS-DDSM dataset. To ensure statistical robustness, we test our system twice using: (a) 5-fold cross validation; and (b) the original training/test division of the dataset. Our technique reached an AUC of 0.9344 using 5-fold cross validation (accuracy, sensitivity and specificity are 85.13% at the equal error rate point of ROC). Using the original dataset division, our technique achieved an AUC of 0.8483, as far as we know the highest reported AUC for this problem, although the subtle differences in the testing conditions of each work do not allow for an accurate comparison. The inference code and model are available at https://github.com/dpetrini/two-views-classifier |
doi_str_mv | 10.1109/ACCESS.2022.3193250 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9837037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9837037</ieee_id><doaj_id>oai_doaj_org_article_fe7c890241a446c2a9d2810ee62667b7</doaj_id><sourcerecordid>2696284433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-db0d71e4aa302e2b35537c40c270428db9100bb2253f3f912e6d1769cdf522f83</originalsourceid><addsrcrecordid>eNpNUcFO3DAQjVCRiihfwMVSz9na48SOj5BuWyRaDiy9Wk48XrzdtRc7y4q_r2kQ6lze6M28Nxq9qrpkdMEYVV-u-n55f78ACrDgTHFo6Ul1BkyomrdcfPiv_1hd5LyhpbpCtfKserpOaPJEehNGTOSrN-sQs8_EB7I6xvq3xyP5aXa7uE5m__hCHrIPa7IMtp5iXYCskvEBLVk650ePYfqFU31tcqH6GJ7j9jD5GMyWFP4Y059P1akz24wXb3hePXxbrvof9e3d95v-6rYeG9pNtR2olQwbYzgFhIG3LZdlNIKkDXR2UIzSYQBoueNOMUBhmRRqtK4FcB0_r25mXxvNRu-T35n0oqPx-h8R01qbNPlxi9qhHDtFoWGmacQIRlnoGEUUIIQcZPH6PHvtU3w6YJ70Jh5SeSprEEpA1zScly0-b40p5pzQvV9lVL9Gpeeo9GtU-i2qorqcVR4R3xWq45Jyyf8CjLCOmA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696284433</pqid></control><display><type>article</type><title>Breast Cancer Diagnosis in Two-View Mammography Using End-to-End Trained EfficientNet-Based Convolutional Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Petrini, Daniel G. P. ; Shimizu, Carlos ; Roela, Rosimeire A. ; Valente, Gabriel Vansuita ; Folgueira, Maria Aparecida Azevedo Koike ; Kim, Hae Yong</creator><creatorcontrib>Petrini, Daniel G. P. ; Shimizu, Carlos ; Roela, Rosimeire A. ; Valente, Gabriel Vansuita ; Folgueira, Maria Aparecida Azevedo Koike ; Kim, Hae Yong</creatorcontrib><description>Some recent studies have described deep convolutional neural networks to diagnose breast cancer in mammograms with similar or even superior performance to that of human experts. One of the best techniques does two transfer learnings: the first uses a model trained on natural images to create a "patch classifier" that categorizes small subimages; the second uses the patch classifier to scan the whole mammogram and create the "single-view whole-image classifier". We propose to make a third transfer learning to obtain a "two-view classifier" to use the two mammographic views: bilateral craniocaudal and mediolateral oblique. We use EfficientNet as the basis of our model. We "end-to-end" train the entire system using CBIS-DDSM dataset. To ensure statistical robustness, we test our system twice using: (a) 5-fold cross validation; and (b) the original training/test division of the dataset. Our technique reached an AUC of 0.9344 using 5-fold cross validation (accuracy, sensitivity and specificity are 85.13% at the equal error rate point of ROC). Using the original dataset division, our technique achieved an AUC of 0.8483, as far as we know the highest reported AUC for this problem, although the subtle differences in the testing conditions of each work do not allow for an accurate comparison. The inference code and model are available at https://github.com/dpetrini/two-views-classifier</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3193250</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Artificial neural networks ; Breast cancer ; Breast cancer diagnosis ; Classifiers ; convolutional neural network ; Convolutional neural networks ; Datasets ; deep learning ; Lesions ; mammogram ; Mammography ; Medical imaging ; Training ; Transfer learning</subject><ispartof>IEEE access, 2022, Vol.10, p.77723-77731</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-db0d71e4aa302e2b35537c40c270428db9100bb2253f3f912e6d1769cdf522f83</citedby><cites>FETCH-LOGICAL-c408t-db0d71e4aa302e2b35537c40c270428db9100bb2253f3f912e6d1769cdf522f83</cites><orcidid>0000-0002-7278-9632 ; 0000-0002-0958-5960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9837037$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Petrini, Daniel G. P.</creatorcontrib><creatorcontrib>Shimizu, Carlos</creatorcontrib><creatorcontrib>Roela, Rosimeire A.</creatorcontrib><creatorcontrib>Valente, Gabriel Vansuita</creatorcontrib><creatorcontrib>Folgueira, Maria Aparecida Azevedo Koike</creatorcontrib><creatorcontrib>Kim, Hae Yong</creatorcontrib><title>Breast Cancer Diagnosis in Two-View Mammography Using End-to-End Trained EfficientNet-Based Convolutional Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>Some recent studies have described deep convolutional neural networks to diagnose breast cancer in mammograms with similar or even superior performance to that of human experts. One of the best techniques does two transfer learnings: the first uses a model trained on natural images to create a "patch classifier" that categorizes small subimages; the second uses the patch classifier to scan the whole mammogram and create the "single-view whole-image classifier". We propose to make a third transfer learning to obtain a "two-view classifier" to use the two mammographic views: bilateral craniocaudal and mediolateral oblique. We use EfficientNet as the basis of our model. We "end-to-end" train the entire system using CBIS-DDSM dataset. To ensure statistical robustness, we test our system twice using: (a) 5-fold cross validation; and (b) the original training/test division of the dataset. Our technique reached an AUC of 0.9344 using 5-fold cross validation (accuracy, sensitivity and specificity are 85.13% at the equal error rate point of ROC). Using the original dataset division, our technique achieved an AUC of 0.8483, as far as we know the highest reported AUC for this problem, although the subtle differences in the testing conditions of each work do not allow for an accurate comparison. The inference code and model are available at https://github.com/dpetrini/two-views-classifier</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Breast cancer</subject><subject>Breast cancer diagnosis</subject><subject>Classifiers</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>deep learning</subject><subject>Lesions</subject><subject>mammogram</subject><subject>Mammography</subject><subject>Medical imaging</subject><subject>Training</subject><subject>Transfer learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFO3DAQjVCRiihfwMVSz9na48SOj5BuWyRaDiy9Wk48XrzdtRc7y4q_r2kQ6lze6M28Nxq9qrpkdMEYVV-u-n55f78ACrDgTHFo6Ul1BkyomrdcfPiv_1hd5LyhpbpCtfKserpOaPJEehNGTOSrN-sQs8_EB7I6xvq3xyP5aXa7uE5m__hCHrIPa7IMtp5iXYCskvEBLVk650ePYfqFU31tcqH6GJ7j9jD5GMyWFP4Y059P1akz24wXb3hePXxbrvof9e3d95v-6rYeG9pNtR2olQwbYzgFhIG3LZdlNIKkDXR2UIzSYQBoueNOMUBhmRRqtK4FcB0_r25mXxvNRu-T35n0oqPx-h8R01qbNPlxi9qhHDtFoWGmacQIRlnoGEUUIIQcZPH6PHvtU3w6YJ70Jh5SeSprEEpA1zScly0-b40p5pzQvV9lVL9Gpeeo9GtU-i2qorqcVR4R3xWq45Jyyf8CjLCOmA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Petrini, Daniel G. P.</creator><creator>Shimizu, Carlos</creator><creator>Roela, Rosimeire A.</creator><creator>Valente, Gabriel Vansuita</creator><creator>Folgueira, Maria Aparecida Azevedo Koike</creator><creator>Kim, Hae Yong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7278-9632</orcidid><orcidid>https://orcid.org/0000-0002-0958-5960</orcidid></search><sort><creationdate>2022</creationdate><title>Breast Cancer Diagnosis in Two-View Mammography Using End-to-End Trained EfficientNet-Based Convolutional Network</title><author>Petrini, Daniel G. P. ; Shimizu, Carlos ; Roela, Rosimeire A. ; Valente, Gabriel Vansuita ; Folgueira, Maria Aparecida Azevedo Koike ; Kim, Hae Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-db0d71e4aa302e2b35537c40c270428db9100bb2253f3f912e6d1769cdf522f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Breast cancer</topic><topic>Breast cancer diagnosis</topic><topic>Classifiers</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>deep learning</topic><topic>Lesions</topic><topic>mammogram</topic><topic>Mammography</topic><topic>Medical imaging</topic><topic>Training</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrini, Daniel G. P.</creatorcontrib><creatorcontrib>Shimizu, Carlos</creatorcontrib><creatorcontrib>Roela, Rosimeire A.</creatorcontrib><creatorcontrib>Valente, Gabriel Vansuita</creatorcontrib><creatorcontrib>Folgueira, Maria Aparecida Azevedo Koike</creatorcontrib><creatorcontrib>Kim, Hae Yong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrini, Daniel G. P.</au><au>Shimizu, Carlos</au><au>Roela, Rosimeire A.</au><au>Valente, Gabriel Vansuita</au><au>Folgueira, Maria Aparecida Azevedo Koike</au><au>Kim, Hae Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breast Cancer Diagnosis in Two-View Mammography Using End-to-End Trained EfficientNet-Based Convolutional Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>77723</spage><epage>77731</epage><pages>77723-77731</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Some recent studies have described deep convolutional neural networks to diagnose breast cancer in mammograms with similar or even superior performance to that of human experts. One of the best techniques does two transfer learnings: the first uses a model trained on natural images to create a "patch classifier" that categorizes small subimages; the second uses the patch classifier to scan the whole mammogram and create the "single-view whole-image classifier". We propose to make a third transfer learning to obtain a "two-view classifier" to use the two mammographic views: bilateral craniocaudal and mediolateral oblique. We use EfficientNet as the basis of our model. We "end-to-end" train the entire system using CBIS-DDSM dataset. To ensure statistical robustness, we test our system twice using: (a) 5-fold cross validation; and (b) the original training/test division of the dataset. Our technique reached an AUC of 0.9344 using 5-fold cross validation (accuracy, sensitivity and specificity are 85.13% at the equal error rate point of ROC). Using the original dataset division, our technique achieved an AUC of 0.8483, as far as we know the highest reported AUC for this problem, although the subtle differences in the testing conditions of each work do not allow for an accurate comparison. The inference code and model are available at https://github.com/dpetrini/two-views-classifier</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3193250</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7278-9632</orcidid><orcidid>https://orcid.org/0000-0002-0958-5960</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.77723-77731 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9837037 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial intelligence Artificial neural networks Breast cancer Breast cancer diagnosis Classifiers convolutional neural network Convolutional neural networks Datasets deep learning Lesions mammogram Mammography Medical imaging Training Transfer learning |
title | Breast Cancer Diagnosis in Two-View Mammography Using End-to-End Trained EfficientNet-Based Convolutional Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breast%20Cancer%20Diagnosis%20in%20Two-View%20Mammography%20Using%20End-to-End%20Trained%20EfficientNet-Based%20Convolutional%20Network&rft.jtitle=IEEE%20access&rft.au=Petrini,%20Daniel%20G.%20P.&rft.date=2022&rft.volume=10&rft.spage=77723&rft.epage=77731&rft.pages=77723-77731&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3193250&rft_dat=%3Cproquest_ieee_%3E2696284433%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696284433&rft_id=info:pmid/&rft_ieee_id=9837037&rft_doaj_id=oai_doaj_org_article_fe7c890241a446c2a9d2810ee62667b7&rfr_iscdi=true |