An Intelligent Adaptive Spatiotemporal Graph Approach for GPS-Data-Based Travel-Time Estimation

Existing real-world travel-time estimation applications face the crucial challenge of inferencing spatiotemporal traffic status propagation over complex and irregular networks. To meet that challenge, this article presents a novel GPS-data-based travel-time estimation approach utilizing an adaptive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE intelligent transportation systems magazine 2022-09, Vol.14 (5), p.222-237
Hauptverfasser: Xu, Mengyun, Fang, Jie, Tong, Yingfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue 5
container_start_page 222
container_title IEEE intelligent transportation systems magazine
container_volume 14
creator Xu, Mengyun
Fang, Jie
Tong, Yingfang
description Existing real-world travel-time estimation applications face the crucial challenge of inferencing spatiotemporal traffic status propagation over complex and irregular networks. To meet that challenge, this article presents a novel GPS-data-based travel-time estimation approach utilizing an adaptive spatiotemporal graph (ASTG). The proposed ASTG approach improves the original attention mechanism (with an enhanced self-attention mechanism) while adaptively analyzing the dynamic relevancy between segments over the vast spatial and temporal dimensions. Moreover, various traffic metadata, such as additionally available traffic state variables and network/road characteristic information, were better utilized. Leveraging a gate fusion function, the spatial and temporal dependencies extracted from traffic metadata were fused for inferencing more precise traffic states. A field implementation of the proposed approach was conducted in Zhangzhou, China, with sparse GPS probe data, and evaluated against the automatic vehicle identification reported segment travel time. Compared to other high-performance baseline algorithms, the proposed ASTG model demonstrated state-of-the-art accuracy while intuitively capturing the sophisticated dynamic spatiotemporal relevancy with the proposed enhanced attention mechanism. Implementing the proposed system would provide valuable travel information for road users and, meanwhile, assist traffic management agencies in congestion alleviation.
doi_str_mv 10.1109/MITS.2021.3099796
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9833527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9833527</ieee_id><sourcerecordid>2714892134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-1634bfd440b101b404f9f4f6dc7ea547962cf1881269f29f5c0eb3fd2b29ffed3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOZ-gHgT8DozJ0k_clnnnIOJwup1SNvEdXRtTbKB_96WDc_NOQfe93w8CN0DnQNQ-fS-zrdzRhnMOZUykfEVmoAUQABkcj3WXBLgkt6imfd7OgRnaczkBKmsxes2mKapv00bcFbpPtQng7e9DnUXzKHvnG7wyul-h7O-d50ud9h2Dq8-t-RFB02etTcVzp0-mYbk9cHgpQ_1YfS3d-jG6sab2SVP0dfrMl-8kc3Har3INqRkURwIxFwUthKCFkChEFRYaYWNqzIxOhLDS6y0kKbAYmmZtFFJTcFtxYqhsabiU_R4njsc-HM0Pqh9d3TtsFKxBEQqGXAxqOCsKl3nvTNW9W441P0qoGpEqUaUakSpLigHz8PZUxtj_vUy5TxiCf8DGmxvdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714892134</pqid></control><display><type>article</type><title>An Intelligent Adaptive Spatiotemporal Graph Approach for GPS-Data-Based Travel-Time Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Mengyun ; Fang, Jie ; Tong, Yingfang</creator><creatorcontrib>Xu, Mengyun ; Fang, Jie ; Tong, Yingfang</creatorcontrib><description>Existing real-world travel-time estimation applications face the crucial challenge of inferencing spatiotemporal traffic status propagation over complex and irregular networks. To meet that challenge, this article presents a novel GPS-data-based travel-time estimation approach utilizing an adaptive spatiotemporal graph (ASTG). The proposed ASTG approach improves the original attention mechanism (with an enhanced self-attention mechanism) while adaptively analyzing the dynamic relevancy between segments over the vast spatial and temporal dimensions. Moreover, various traffic metadata, such as additionally available traffic state variables and network/road characteristic information, were better utilized. Leveraging a gate fusion function, the spatial and temporal dependencies extracted from traffic metadata were fused for inferencing more precise traffic states. A field implementation of the proposed approach was conducted in Zhangzhou, China, with sparse GPS probe data, and evaluated against the automatic vehicle identification reported segment travel time. Compared to other high-performance baseline algorithms, the proposed ASTG model demonstrated state-of-the-art accuracy while intuitively capturing the sophisticated dynamic spatiotemporal relevancy with the proposed enhanced attention mechanism. Implementing the proposed system would provide valuable travel information for road users and, meanwhile, assist traffic management agencies in congestion alleviation.</description><identifier>ISSN: 1939-1390</identifier><identifier>EISSN: 1941-1197</identifier><identifier>DOI: 10.1109/MITS.2021.3099796</identifier><identifier>CODEN: IITSBO</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Algorithms ; Correlation ; Estimation ; Global Positioning System ; Mathematical models ; Metadata ; Road traffic ; Segments ; Spatiotemporal phenomena ; Traffic congestion ; Traffic management ; Travel time ; Vehicle identification</subject><ispartof>IEEE intelligent transportation systems magazine, 2022-09, Vol.14 (5), p.222-237</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-1634bfd440b101b404f9f4f6dc7ea547962cf1881269f29f5c0eb3fd2b29ffed3</citedby><cites>FETCH-LOGICAL-c256t-1634bfd440b101b404f9f4f6dc7ea547962cf1881269f29f5c0eb3fd2b29ffed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9833527$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9833527$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Mengyun</creatorcontrib><creatorcontrib>Fang, Jie</creatorcontrib><creatorcontrib>Tong, Yingfang</creatorcontrib><title>An Intelligent Adaptive Spatiotemporal Graph Approach for GPS-Data-Based Travel-Time Estimation</title><title>IEEE intelligent transportation systems magazine</title><addtitle>MITS</addtitle><description>Existing real-world travel-time estimation applications face the crucial challenge of inferencing spatiotemporal traffic status propagation over complex and irregular networks. To meet that challenge, this article presents a novel GPS-data-based travel-time estimation approach utilizing an adaptive spatiotemporal graph (ASTG). The proposed ASTG approach improves the original attention mechanism (with an enhanced self-attention mechanism) while adaptively analyzing the dynamic relevancy between segments over the vast spatial and temporal dimensions. Moreover, various traffic metadata, such as additionally available traffic state variables and network/road characteristic information, were better utilized. Leveraging a gate fusion function, the spatial and temporal dependencies extracted from traffic metadata were fused for inferencing more precise traffic states. A field implementation of the proposed approach was conducted in Zhangzhou, China, with sparse GPS probe data, and evaluated against the automatic vehicle identification reported segment travel time. Compared to other high-performance baseline algorithms, the proposed ASTG model demonstrated state-of-the-art accuracy while intuitively capturing the sophisticated dynamic spatiotemporal relevancy with the proposed enhanced attention mechanism. Implementing the proposed system would provide valuable travel information for road users and, meanwhile, assist traffic management agencies in congestion alleviation.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Correlation</subject><subject>Estimation</subject><subject>Global Positioning System</subject><subject>Mathematical models</subject><subject>Metadata</subject><subject>Road traffic</subject><subject>Segments</subject><subject>Spatiotemporal phenomena</subject><subject>Traffic congestion</subject><subject>Traffic management</subject><subject>Travel time</subject><subject>Vehicle identification</subject><issn>1939-1390</issn><issn>1941-1197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOOZ-gHgT8DozJ0k_clnnnIOJwup1SNvEdXRtTbKB_96WDc_NOQfe93w8CN0DnQNQ-fS-zrdzRhnMOZUykfEVmoAUQABkcj3WXBLgkt6imfd7OgRnaczkBKmsxes2mKapv00bcFbpPtQng7e9DnUXzKHvnG7wyul-h7O-d50ud9h2Dq8-t-RFB02etTcVzp0-mYbk9cHgpQ_1YfS3d-jG6sab2SVP0dfrMl-8kc3Har3INqRkURwIxFwUthKCFkChEFRYaYWNqzIxOhLDS6y0kKbAYmmZtFFJTcFtxYqhsabiU_R4njsc-HM0Pqh9d3TtsFKxBEQqGXAxqOCsKl3nvTNW9W441P0qoGpEqUaUakSpLigHz8PZUxtj_vUy5TxiCf8DGmxvdA</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Xu, Mengyun</creator><creator>Fang, Jie</creator><creator>Tong, Yingfang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>202209</creationdate><title>An Intelligent Adaptive Spatiotemporal Graph Approach for GPS-Data-Based Travel-Time Estimation</title><author>Xu, Mengyun ; Fang, Jie ; Tong, Yingfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-1634bfd440b101b404f9f4f6dc7ea547962cf1881269f29f5c0eb3fd2b29ffed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Correlation</topic><topic>Estimation</topic><topic>Global Positioning System</topic><topic>Mathematical models</topic><topic>Metadata</topic><topic>Road traffic</topic><topic>Segments</topic><topic>Spatiotemporal phenomena</topic><topic>Traffic congestion</topic><topic>Traffic management</topic><topic>Travel time</topic><topic>Vehicle identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Mengyun</creatorcontrib><creatorcontrib>Fang, Jie</creatorcontrib><creatorcontrib>Tong, Yingfang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>IEEE intelligent transportation systems magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Mengyun</au><au>Fang, Jie</au><au>Tong, Yingfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Intelligent Adaptive Spatiotemporal Graph Approach for GPS-Data-Based Travel-Time Estimation</atitle><jtitle>IEEE intelligent transportation systems magazine</jtitle><stitle>MITS</stitle><date>2022-09</date><risdate>2022</risdate><volume>14</volume><issue>5</issue><spage>222</spage><epage>237</epage><pages>222-237</pages><issn>1939-1390</issn><eissn>1941-1197</eissn><coden>IITSBO</coden><abstract>Existing real-world travel-time estimation applications face the crucial challenge of inferencing spatiotemporal traffic status propagation over complex and irregular networks. To meet that challenge, this article presents a novel GPS-data-based travel-time estimation approach utilizing an adaptive spatiotemporal graph (ASTG). The proposed ASTG approach improves the original attention mechanism (with an enhanced self-attention mechanism) while adaptively analyzing the dynamic relevancy between segments over the vast spatial and temporal dimensions. Moreover, various traffic metadata, such as additionally available traffic state variables and network/road characteristic information, were better utilized. Leveraging a gate fusion function, the spatial and temporal dependencies extracted from traffic metadata were fused for inferencing more precise traffic states. A field implementation of the proposed approach was conducted in Zhangzhou, China, with sparse GPS probe data, and evaluated against the automatic vehicle identification reported segment travel time. Compared to other high-performance baseline algorithms, the proposed ASTG model demonstrated state-of-the-art accuracy while intuitively capturing the sophisticated dynamic spatiotemporal relevancy with the proposed enhanced attention mechanism. Implementing the proposed system would provide valuable travel information for road users and, meanwhile, assist traffic management agencies in congestion alleviation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/MITS.2021.3099796</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1390
ispartof IEEE intelligent transportation systems magazine, 2022-09, Vol.14 (5), p.222-237
issn 1939-1390
1941-1197
language eng
recordid cdi_ieee_primary_9833527
source IEEE Electronic Library (IEL)
subjects Adaptation models
Algorithms
Correlation
Estimation
Global Positioning System
Mathematical models
Metadata
Road traffic
Segments
Spatiotemporal phenomena
Traffic congestion
Traffic management
Travel time
Vehicle identification
title An Intelligent Adaptive Spatiotemporal Graph Approach for GPS-Data-Based Travel-Time Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Intelligent%20Adaptive%20Spatiotemporal%20Graph%20Approach%20for%20GPS-Data-Based%20Travel-Time%20Estimation&rft.jtitle=IEEE%20intelligent%20transportation%20systems%20magazine&rft.au=Xu,%20Mengyun&rft.date=2022-09&rft.volume=14&rft.issue=5&rft.spage=222&rft.epage=237&rft.pages=222-237&rft.issn=1939-1390&rft.eissn=1941-1197&rft.coden=IITSBO&rft_id=info:doi/10.1109/MITS.2021.3099796&rft_dat=%3Cproquest_RIE%3E2714892134%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714892134&rft_id=info:pmid/&rft_ieee_id=9833527&rfr_iscdi=true