A Multimodal Approach for Identifying Autism Spectrum Disorders in Children

Identification of autism spectrum disorder (ASD) in children is challenging due to the complexity and heterogeneity of ASD. Currently, most existing methods mainly rely on a single modality with limited information and often cannot achieve satisfactory performance. To address this issue, this paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2022, Vol.30, p.1-1
Hauptverfasser: Han, Junxia, Jiang, Guoqian, Ouyang, Gaoxiang, Li, Xiaoli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 30
creator Han, Junxia
Jiang, Guoqian
Ouyang, Gaoxiang
Li, Xiaoli
description Identification of autism spectrum disorder (ASD) in children is challenging due to the complexity and heterogeneity of ASD. Currently, most existing methods mainly rely on a single modality with limited information and often cannot achieve satisfactory performance. To address this issue, this paper investigates from internal neurophysiological and external behavior perspectives simultaneously and proposes a new multimodal diagnosis framework for identifying ASD in children with fusion of electroencephalogram (EEG) and eye-tracking (ET) data. Specifically, we designed a two-step multimodal feature learning and fusion model based on a typical deep learning algorithm, stacked denoising autoencoder (SDAE). In the first step, two SDAE models are designed for feature learning for EEG and ET modality, respectively. Then, a third SDAE model in the second step is designed to perform multimodal fusion with learned EEG and ET features in a concatenated way. Our designed multimodal identification model can automatically capture correlations and complementarity from behavior modality and neurophysiological modality in a latent feature space, and generate informative feature representations with better discriminability and generalization for enhanced identification performance. We collected a multimodal dataset containing 40 ASD children and 50 typically developing (TD) children to evaluate our proposed method. Experimental results showed that our proposed method achieved superior performance compared with two unimodal methods and a simple feature-level fusion method, which has promising potential to provide an objective and accurate diagnosis to assist clinicians.
doi_str_mv 10.1109/TNSRE.2022.3192431
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9832930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9832930</ieee_id><doaj_id>oai_doaj_org_article_487877832dfd4171a51feef1b5964b85</doaj_id><sourcerecordid>2692810063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-82e106a4366f7e1f2109a128a480370daa53310acb05c473c49cd52abfcd7fce3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxSMEEqXwBeBiiQuXbD3-E9vH1dLCihYkWs6W1x63XiXxYieHfnuy3aoHTjMa_d7TG72m-Qh0BUDNxd3P29-XK0YZW3EwTHB41ZyBlLqlDOjr485FKzijb5t3te4pBdVJddb8WJObuZ_SkIPryfpwKNn5BxJzIduA45TiYxrvyXqeUh3I7QH9VOaBfE01l4ClkjSSzUPqQ8HxffMmur7ih-d53vy5urzbfG-vf33bbtbXrRdcT61mCLRzgnddVAhxCWgcMO2EplzR4JzkHKjzOyq9UNwL44Nkbhd9UNEjP2-2J9-Q3d4eShpcebTZJft0yOXeujIl36MVWmmlNGchBgEKnISIGGEnTSd2Wi5eX05ey-N_Z6yTHVL12PduxDxXyzoDShup1YJ-_g_d57mMy6dHimmgtOMLxU6UL7nWgvElIFB77Mo-dWWPXdnnrhbRp5MoIeKLwCy5Daf8HxoVjlM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692810063</pqid></control><display><type>article</type><title>A Multimodal Approach for Identifying Autism Spectrum Disorders in Children</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Han, Junxia ; Jiang, Guoqian ; Ouyang, Gaoxiang ; Li, Xiaoli</creator><creatorcontrib>Han, Junxia ; Jiang, Guoqian ; Ouyang, Gaoxiang ; Li, Xiaoli</creatorcontrib><description>Identification of autism spectrum disorder (ASD) in children is challenging due to the complexity and heterogeneity of ASD. Currently, most existing methods mainly rely on a single modality with limited information and often cannot achieve satisfactory performance. To address this issue, this paper investigates from internal neurophysiological and external behavior perspectives simultaneously and proposes a new multimodal diagnosis framework for identifying ASD in children with fusion of electroencephalogram (EEG) and eye-tracking (ET) data. Specifically, we designed a two-step multimodal feature learning and fusion model based on a typical deep learning algorithm, stacked denoising autoencoder (SDAE). In the first step, two SDAE models are designed for feature learning for EEG and ET modality, respectively. Then, a third SDAE model in the second step is designed to perform multimodal fusion with learned EEG and ET features in a concatenated way. Our designed multimodal identification model can automatically capture correlations and complementarity from behavior modality and neurophysiological modality in a latent feature space, and generate informative feature representations with better discriminability and generalization for enhanced identification performance. We collected a multimodal dataset containing 40 ASD children and 50 typically developing (TD) children to evaluate our proposed method. Experimental results showed that our proposed method achieved superior performance compared with two unimodal methods and a simple feature-level fusion method, which has promising potential to provide an objective and accurate diagnosis to assist clinicians.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2022.3192431</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Autism ; Autism spectrum disorders (ASD) ; Behavioral sciences ; Brain modeling ; Children ; Classification ; Complementarity ; Deep learning ; Diagnosis ; EEG ; Electroencephalogram (EEG) ; Electroencephalography ; Eye movements ; Eye-tracking (ET) ; Feature extraction ; Heterogeneity ; Machine learning ; Multimodal fusion ; Neuroimaging ; Pediatrics ; Stacked denoising autoencoders ; Variable speed drives</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2022, Vol.30, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-82e106a4366f7e1f2109a128a480370daa53310acb05c473c49cd52abfcd7fce3</citedby><cites>FETCH-LOGICAL-c438t-82e106a4366f7e1f2109a128a480370daa53310acb05c473c49cd52abfcd7fce3</cites><orcidid>0000-0003-1359-5130 ; 0000-0002-6390-626X ; 0000-0002-1813-8249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Han, Junxia</creatorcontrib><creatorcontrib>Jiang, Guoqian</creatorcontrib><creatorcontrib>Ouyang, Gaoxiang</creatorcontrib><creatorcontrib>Li, Xiaoli</creatorcontrib><title>A Multimodal Approach for Identifying Autism Spectrum Disorders in Children</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><description>Identification of autism spectrum disorder (ASD) in children is challenging due to the complexity and heterogeneity of ASD. Currently, most existing methods mainly rely on a single modality with limited information and often cannot achieve satisfactory performance. To address this issue, this paper investigates from internal neurophysiological and external behavior perspectives simultaneously and proposes a new multimodal diagnosis framework for identifying ASD in children with fusion of electroencephalogram (EEG) and eye-tracking (ET) data. Specifically, we designed a two-step multimodal feature learning and fusion model based on a typical deep learning algorithm, stacked denoising autoencoder (SDAE). In the first step, two SDAE models are designed for feature learning for EEG and ET modality, respectively. Then, a third SDAE model in the second step is designed to perform multimodal fusion with learned EEG and ET features in a concatenated way. Our designed multimodal identification model can automatically capture correlations and complementarity from behavior modality and neurophysiological modality in a latent feature space, and generate informative feature representations with better discriminability and generalization for enhanced identification performance. We collected a multimodal dataset containing 40 ASD children and 50 typically developing (TD) children to evaluate our proposed method. Experimental results showed that our proposed method achieved superior performance compared with two unimodal methods and a simple feature-level fusion method, which has promising potential to provide an objective and accurate diagnosis to assist clinicians.</description><subject>Algorithms</subject><subject>Autism</subject><subject>Autism spectrum disorders (ASD)</subject><subject>Behavioral sciences</subject><subject>Brain modeling</subject><subject>Children</subject><subject>Classification</subject><subject>Complementarity</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>EEG</subject><subject>Electroencephalogram (EEG)</subject><subject>Electroencephalography</subject><subject>Eye movements</subject><subject>Eye-tracking (ET)</subject><subject>Feature extraction</subject><subject>Heterogeneity</subject><subject>Machine learning</subject><subject>Multimodal fusion</subject><subject>Neuroimaging</subject><subject>Pediatrics</subject><subject>Stacked denoising autoencoders</subject><subject>Variable speed drives</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU9v1DAQxSMEEqXwBeBiiQuXbD3-E9vH1dLCihYkWs6W1x63XiXxYieHfnuy3aoHTjMa_d7TG72m-Qh0BUDNxd3P29-XK0YZW3EwTHB41ZyBlLqlDOjr485FKzijb5t3te4pBdVJddb8WJObuZ_SkIPryfpwKNn5BxJzIduA45TiYxrvyXqeUh3I7QH9VOaBfE01l4ClkjSSzUPqQ8HxffMmur7ih-d53vy5urzbfG-vf33bbtbXrRdcT61mCLRzgnddVAhxCWgcMO2EplzR4JzkHKjzOyq9UNwL44Nkbhd9UNEjP2-2J9-Q3d4eShpcebTZJft0yOXeujIl36MVWmmlNGchBgEKnISIGGEnTSd2Wi5eX05ey-N_Z6yTHVL12PduxDxXyzoDShup1YJ-_g_d57mMy6dHimmgtOMLxU6UL7nWgvElIFB77Mo-dWWPXdnnrhbRp5MoIeKLwCy5Daf8HxoVjlM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Han, Junxia</creator><creator>Jiang, Guoqian</creator><creator>Ouyang, Gaoxiang</creator><creator>Li, Xiaoli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1359-5130</orcidid><orcidid>https://orcid.org/0000-0002-6390-626X</orcidid><orcidid>https://orcid.org/0000-0002-1813-8249</orcidid></search><sort><creationdate>2022</creationdate><title>A Multimodal Approach for Identifying Autism Spectrum Disorders in Children</title><author>Han, Junxia ; Jiang, Guoqian ; Ouyang, Gaoxiang ; Li, Xiaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-82e106a4366f7e1f2109a128a480370daa53310acb05c473c49cd52abfcd7fce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Autism</topic><topic>Autism spectrum disorders (ASD)</topic><topic>Behavioral sciences</topic><topic>Brain modeling</topic><topic>Children</topic><topic>Classification</topic><topic>Complementarity</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>EEG</topic><topic>Electroencephalogram (EEG)</topic><topic>Electroencephalography</topic><topic>Eye movements</topic><topic>Eye-tracking (ET)</topic><topic>Feature extraction</topic><topic>Heterogeneity</topic><topic>Machine learning</topic><topic>Multimodal fusion</topic><topic>Neuroimaging</topic><topic>Pediatrics</topic><topic>Stacked denoising autoencoders</topic><topic>Variable speed drives</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Junxia</creatorcontrib><creatorcontrib>Jiang, Guoqian</creatorcontrib><creatorcontrib>Ouyang, Gaoxiang</creatorcontrib><creatorcontrib>Li, Xiaoli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Junxia</au><au>Jiang, Guoqian</au><au>Ouyang, Gaoxiang</au><au>Li, Xiaoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multimodal Approach for Identifying Autism Spectrum Disorders in Children</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><date>2022</date><risdate>2022</risdate><volume>30</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Identification of autism spectrum disorder (ASD) in children is challenging due to the complexity and heterogeneity of ASD. Currently, most existing methods mainly rely on a single modality with limited information and often cannot achieve satisfactory performance. To address this issue, this paper investigates from internal neurophysiological and external behavior perspectives simultaneously and proposes a new multimodal diagnosis framework for identifying ASD in children with fusion of electroencephalogram (EEG) and eye-tracking (ET) data. Specifically, we designed a two-step multimodal feature learning and fusion model based on a typical deep learning algorithm, stacked denoising autoencoder (SDAE). In the first step, two SDAE models are designed for feature learning for EEG and ET modality, respectively. Then, a third SDAE model in the second step is designed to perform multimodal fusion with learned EEG and ET features in a concatenated way. Our designed multimodal identification model can automatically capture correlations and complementarity from behavior modality and neurophysiological modality in a latent feature space, and generate informative feature representations with better discriminability and generalization for enhanced identification performance. We collected a multimodal dataset containing 40 ASD children and 50 typically developing (TD) children to evaluate our proposed method. Experimental results showed that our proposed method achieved superior performance compared with two unimodal methods and a simple feature-level fusion method, which has promising potential to provide an objective and accurate diagnosis to assist clinicians.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSRE.2022.3192431</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1359-5130</orcidid><orcidid>https://orcid.org/0000-0002-6390-626X</orcidid><orcidid>https://orcid.org/0000-0002-1813-8249</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2022, Vol.30, p.1-1
issn 1534-4320
1558-0210
language eng
recordid cdi_ieee_primary_9832930
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Autism
Autism spectrum disorders (ASD)
Behavioral sciences
Brain modeling
Children
Classification
Complementarity
Deep learning
Diagnosis
EEG
Electroencephalogram (EEG)
Electroencephalography
Eye movements
Eye-tracking (ET)
Feature extraction
Heterogeneity
Machine learning
Multimodal fusion
Neuroimaging
Pediatrics
Stacked denoising autoencoders
Variable speed drives
title A Multimodal Approach for Identifying Autism Spectrum Disorders in Children
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A46%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multimodal%20Approach%20for%20Identifying%20Autism%20Spectrum%20Disorders%20in%20Children&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Han,%20Junxia&rft.date=2022&rft.volume=30&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2022.3192431&rft_dat=%3Cproquest_ieee_%3E2692810063%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692810063&rft_id=info:pmid/&rft_ieee_id=9832930&rft_doaj_id=oai_doaj_org_article_487877832dfd4171a51feef1b5964b85&rfr_iscdi=true