A Multimodal Approach for Identifying Autism Spectrum Disorders in Children
Identification of autism spectrum disorder (ASD) in children is challenging due to the complexity and heterogeneity of ASD. Currently, most existing methods mainly rely on a single modality with limited information and often cannot achieve satisfactory performance. To address this issue, this paper...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2022, Vol.30, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 30 |
creator | Han, Junxia Jiang, Guoqian Ouyang, Gaoxiang Li, Xiaoli |
description | Identification of autism spectrum disorder (ASD) in children is challenging due to the complexity and heterogeneity of ASD. Currently, most existing methods mainly rely on a single modality with limited information and often cannot achieve satisfactory performance. To address this issue, this paper investigates from internal neurophysiological and external behavior perspectives simultaneously and proposes a new multimodal diagnosis framework for identifying ASD in children with fusion of electroencephalogram (EEG) and eye-tracking (ET) data. Specifically, we designed a two-step multimodal feature learning and fusion model based on a typical deep learning algorithm, stacked denoising autoencoder (SDAE). In the first step, two SDAE models are designed for feature learning for EEG and ET modality, respectively. Then, a third SDAE model in the second step is designed to perform multimodal fusion with learned EEG and ET features in a concatenated way. Our designed multimodal identification model can automatically capture correlations and complementarity from behavior modality and neurophysiological modality in a latent feature space, and generate informative feature representations with better discriminability and generalization for enhanced identification performance. We collected a multimodal dataset containing 40 ASD children and 50 typically developing (TD) children to evaluate our proposed method. Experimental results showed that our proposed method achieved superior performance compared with two unimodal methods and a simple feature-level fusion method, which has promising potential to provide an objective and accurate diagnosis to assist clinicians. |
doi_str_mv | 10.1109/TNSRE.2022.3192431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9832930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9832930</ieee_id><doaj_id>oai_doaj_org_article_487877832dfd4171a51feef1b5964b85</doaj_id><sourcerecordid>2692810063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-82e106a4366f7e1f2109a128a480370daa53310acb05c473c49cd52abfcd7fce3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxSMEEqXwBeBiiQuXbD3-E9vH1dLCihYkWs6W1x63XiXxYieHfnuy3aoHTjMa_d7TG72m-Qh0BUDNxd3P29-XK0YZW3EwTHB41ZyBlLqlDOjr485FKzijb5t3te4pBdVJddb8WJObuZ_SkIPryfpwKNn5BxJzIduA45TiYxrvyXqeUh3I7QH9VOaBfE01l4ClkjSSzUPqQ8HxffMmur7ih-d53vy5urzbfG-vf33bbtbXrRdcT61mCLRzgnddVAhxCWgcMO2EplzR4JzkHKjzOyq9UNwL44Nkbhd9UNEjP2-2J9-Q3d4eShpcebTZJft0yOXeujIl36MVWmmlNGchBgEKnISIGGEnTSd2Wi5eX05ey-N_Z6yTHVL12PduxDxXyzoDShup1YJ-_g_d57mMy6dHimmgtOMLxU6UL7nWgvElIFB77Mo-dWWPXdnnrhbRp5MoIeKLwCy5Daf8HxoVjlM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692810063</pqid></control><display><type>article</type><title>A Multimodal Approach for Identifying Autism Spectrum Disorders in Children</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Han, Junxia ; Jiang, Guoqian ; Ouyang, Gaoxiang ; Li, Xiaoli</creator><creatorcontrib>Han, Junxia ; Jiang, Guoqian ; Ouyang, Gaoxiang ; Li, Xiaoli</creatorcontrib><description>Identification of autism spectrum disorder (ASD) in children is challenging due to the complexity and heterogeneity of ASD. Currently, most existing methods mainly rely on a single modality with limited information and often cannot achieve satisfactory performance. To address this issue, this paper investigates from internal neurophysiological and external behavior perspectives simultaneously and proposes a new multimodal diagnosis framework for identifying ASD in children with fusion of electroencephalogram (EEG) and eye-tracking (ET) data. Specifically, we designed a two-step multimodal feature learning and fusion model based on a typical deep learning algorithm, stacked denoising autoencoder (SDAE). In the first step, two SDAE models are designed for feature learning for EEG and ET modality, respectively. Then, a third SDAE model in the second step is designed to perform multimodal fusion with learned EEG and ET features in a concatenated way. Our designed multimodal identification model can automatically capture correlations and complementarity from behavior modality and neurophysiological modality in a latent feature space, and generate informative feature representations with better discriminability and generalization for enhanced identification performance. We collected a multimodal dataset containing 40 ASD children and 50 typically developing (TD) children to evaluate our proposed method. Experimental results showed that our proposed method achieved superior performance compared with two unimodal methods and a simple feature-level fusion method, which has promising potential to provide an objective and accurate diagnosis to assist clinicians.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2022.3192431</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Autism ; Autism spectrum disorders (ASD) ; Behavioral sciences ; Brain modeling ; Children ; Classification ; Complementarity ; Deep learning ; Diagnosis ; EEG ; Electroencephalogram (EEG) ; Electroencephalography ; Eye movements ; Eye-tracking (ET) ; Feature extraction ; Heterogeneity ; Machine learning ; Multimodal fusion ; Neuroimaging ; Pediatrics ; Stacked denoising autoencoders ; Variable speed drives</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2022, Vol.30, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-82e106a4366f7e1f2109a128a480370daa53310acb05c473c49cd52abfcd7fce3</citedby><cites>FETCH-LOGICAL-c438t-82e106a4366f7e1f2109a128a480370daa53310acb05c473c49cd52abfcd7fce3</cites><orcidid>0000-0003-1359-5130 ; 0000-0002-6390-626X ; 0000-0002-1813-8249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Han, Junxia</creatorcontrib><creatorcontrib>Jiang, Guoqian</creatorcontrib><creatorcontrib>Ouyang, Gaoxiang</creatorcontrib><creatorcontrib>Li, Xiaoli</creatorcontrib><title>A Multimodal Approach for Identifying Autism Spectrum Disorders in Children</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><description>Identification of autism spectrum disorder (ASD) in children is challenging due to the complexity and heterogeneity of ASD. Currently, most existing methods mainly rely on a single modality with limited information and often cannot achieve satisfactory performance. To address this issue, this paper investigates from internal neurophysiological and external behavior perspectives simultaneously and proposes a new multimodal diagnosis framework for identifying ASD in children with fusion of electroencephalogram (EEG) and eye-tracking (ET) data. Specifically, we designed a two-step multimodal feature learning and fusion model based on a typical deep learning algorithm, stacked denoising autoencoder (SDAE). In the first step, two SDAE models are designed for feature learning for EEG and ET modality, respectively. Then, a third SDAE model in the second step is designed to perform multimodal fusion with learned EEG and ET features in a concatenated way. Our designed multimodal identification model can automatically capture correlations and complementarity from behavior modality and neurophysiological modality in a latent feature space, and generate informative feature representations with better discriminability and generalization for enhanced identification performance. We collected a multimodal dataset containing 40 ASD children and 50 typically developing (TD) children to evaluate our proposed method. Experimental results showed that our proposed method achieved superior performance compared with two unimodal methods and a simple feature-level fusion method, which has promising potential to provide an objective and accurate diagnosis to assist clinicians.</description><subject>Algorithms</subject><subject>Autism</subject><subject>Autism spectrum disorders (ASD)</subject><subject>Behavioral sciences</subject><subject>Brain modeling</subject><subject>Children</subject><subject>Classification</subject><subject>Complementarity</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>EEG</subject><subject>Electroencephalogram (EEG)</subject><subject>Electroencephalography</subject><subject>Eye movements</subject><subject>Eye-tracking (ET)</subject><subject>Feature extraction</subject><subject>Heterogeneity</subject><subject>Machine learning</subject><subject>Multimodal fusion</subject><subject>Neuroimaging</subject><subject>Pediatrics</subject><subject>Stacked denoising autoencoders</subject><subject>Variable speed drives</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU9v1DAQxSMEEqXwBeBiiQuXbD3-E9vH1dLCihYkWs6W1x63XiXxYieHfnuy3aoHTjMa_d7TG72m-Qh0BUDNxd3P29-XK0YZW3EwTHB41ZyBlLqlDOjr485FKzijb5t3te4pBdVJddb8WJObuZ_SkIPryfpwKNn5BxJzIduA45TiYxrvyXqeUh3I7QH9VOaBfE01l4ClkjSSzUPqQ8HxffMmur7ih-d53vy5urzbfG-vf33bbtbXrRdcT61mCLRzgnddVAhxCWgcMO2EplzR4JzkHKjzOyq9UNwL44Nkbhd9UNEjP2-2J9-Q3d4eShpcebTZJft0yOXeujIl36MVWmmlNGchBgEKnISIGGEnTSd2Wi5eX05ey-N_Z6yTHVL12PduxDxXyzoDShup1YJ-_g_d57mMy6dHimmgtOMLxU6UL7nWgvElIFB77Mo-dWWPXdnnrhbRp5MoIeKLwCy5Daf8HxoVjlM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Han, Junxia</creator><creator>Jiang, Guoqian</creator><creator>Ouyang, Gaoxiang</creator><creator>Li, Xiaoli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1359-5130</orcidid><orcidid>https://orcid.org/0000-0002-6390-626X</orcidid><orcidid>https://orcid.org/0000-0002-1813-8249</orcidid></search><sort><creationdate>2022</creationdate><title>A Multimodal Approach for Identifying Autism Spectrum Disorders in Children</title><author>Han, Junxia ; Jiang, Guoqian ; Ouyang, Gaoxiang ; Li, Xiaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-82e106a4366f7e1f2109a128a480370daa53310acb05c473c49cd52abfcd7fce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Autism</topic><topic>Autism spectrum disorders (ASD)</topic><topic>Behavioral sciences</topic><topic>Brain modeling</topic><topic>Children</topic><topic>Classification</topic><topic>Complementarity</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>EEG</topic><topic>Electroencephalogram (EEG)</topic><topic>Electroencephalography</topic><topic>Eye movements</topic><topic>Eye-tracking (ET)</topic><topic>Feature extraction</topic><topic>Heterogeneity</topic><topic>Machine learning</topic><topic>Multimodal fusion</topic><topic>Neuroimaging</topic><topic>Pediatrics</topic><topic>Stacked denoising autoencoders</topic><topic>Variable speed drives</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Junxia</creatorcontrib><creatorcontrib>Jiang, Guoqian</creatorcontrib><creatorcontrib>Ouyang, Gaoxiang</creatorcontrib><creatorcontrib>Li, Xiaoli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Junxia</au><au>Jiang, Guoqian</au><au>Ouyang, Gaoxiang</au><au>Li, Xiaoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multimodal Approach for Identifying Autism Spectrum Disorders in Children</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><date>2022</date><risdate>2022</risdate><volume>30</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Identification of autism spectrum disorder (ASD) in children is challenging due to the complexity and heterogeneity of ASD. Currently, most existing methods mainly rely on a single modality with limited information and often cannot achieve satisfactory performance. To address this issue, this paper investigates from internal neurophysiological and external behavior perspectives simultaneously and proposes a new multimodal diagnosis framework for identifying ASD in children with fusion of electroencephalogram (EEG) and eye-tracking (ET) data. Specifically, we designed a two-step multimodal feature learning and fusion model based on a typical deep learning algorithm, stacked denoising autoencoder (SDAE). In the first step, two SDAE models are designed for feature learning for EEG and ET modality, respectively. Then, a third SDAE model in the second step is designed to perform multimodal fusion with learned EEG and ET features in a concatenated way. Our designed multimodal identification model can automatically capture correlations and complementarity from behavior modality and neurophysiological modality in a latent feature space, and generate informative feature representations with better discriminability and generalization for enhanced identification performance. We collected a multimodal dataset containing 40 ASD children and 50 typically developing (TD) children to evaluate our proposed method. Experimental results showed that our proposed method achieved superior performance compared with two unimodal methods and a simple feature-level fusion method, which has promising potential to provide an objective and accurate diagnosis to assist clinicians.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSRE.2022.3192431</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1359-5130</orcidid><orcidid>https://orcid.org/0000-0002-6390-626X</orcidid><orcidid>https://orcid.org/0000-0002-1813-8249</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2022, Vol.30, p.1-1 |
issn | 1534-4320 1558-0210 |
language | eng |
recordid | cdi_ieee_primary_9832930 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Autism Autism spectrum disorders (ASD) Behavioral sciences Brain modeling Children Classification Complementarity Deep learning Diagnosis EEG Electroencephalogram (EEG) Electroencephalography Eye movements Eye-tracking (ET) Feature extraction Heterogeneity Machine learning Multimodal fusion Neuroimaging Pediatrics Stacked denoising autoencoders Variable speed drives |
title | A Multimodal Approach for Identifying Autism Spectrum Disorders in Children |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A46%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multimodal%20Approach%20for%20Identifying%20Autism%20Spectrum%20Disorders%20in%20Children&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Han,%20Junxia&rft.date=2022&rft.volume=30&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2022.3192431&rft_dat=%3Cproquest_ieee_%3E2692810063%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692810063&rft_id=info:pmid/&rft_ieee_id=9832930&rft_doaj_id=oai_doaj_org_article_487877832dfd4171a51feef1b5964b85&rfr_iscdi=true |