A Hybrid Method for Dealing With DVL Faults of SINS/DVL Integrated Navigation System
Aiming at the situation that the underwater integrated navigation system is easy to be disturbed and the output is unavailable during the task of underwater vehicle, a RVBAKF/ LSTM hybrid method is proposed in this paper. Considering the actual underwater working environment of autonomous underwater...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2022-08, Vol.22 (16), p.15844-15854 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15854 |
---|---|
container_issue | 16 |
container_start_page | 15844 |
container_title | IEEE sensors journal |
container_volume | 22 |
creator | Zhu, Jiupeng Li, An Qin, Fangjun Chang, Lubin Qian, Leiyuan |
description | Aiming at the situation that the underwater integrated navigation system is easy to be disturbed and the output is unavailable during the task of underwater vehicle, a RVBAKF/ LSTM hybrid method is proposed in this paper. Considering the actual underwater working environment of autonomous underwater vehicles (AUV), the measured value of Doppler velocity log (DVL) is prone to outliers or even interruption, so it is very important to improve the fault tolerance of integrated navigation system. For the processing of outliers, a robust adaptive filter based on VB theory is proposed. Its advantage is to realize the adaptation of time-varying noise and reduce the interference of outliers to the integrated navigation system. Firstly, selecting the SINS output related to AUV velocity, such as velocity, attitude, angular velocity and specific force as the training input when the DVL output is normal. When DVL output is interrupted, the long short-term memory (LSTM) model is used to provide pseudo measurement values for integrated navigation system. The effectiveness of the method is verified by the on-board experimental data. When the DVL output is interrupted, the method can effectively improve the accuracy of the integrated navigation system. The method in this paper is compared with four different hybrid methods, and the results are obviously better than the four methods. |
doi_str_mv | 10.1109/JSEN.2022.3189985 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9832536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9832536</ieee_id><sourcerecordid>2703132391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-af5140160f665d658363d268c54308f998185c1556337a259df03a70785b43703</originalsourceid><addsrcrecordid>eNo9kMluwjAQhq2qlUppH6DqxVLPAS9x4hwRS6Gi9BC63CyT2GAEMbVNJd6-jkA9zWjmn-X_AHjEqIcxKvqv5XjRI4iQHsW8KDi7Ah3MGE9wnvLrNqcoSWn-fQvuvN8ihIuc5R2wHMDpaeVMDd9U2NgaauvgSMmdadbwy4QNHH3O4UQed8FDq2E5W5T9tjRrglo7GVQNF_LXrGUwtoHlyQe1vwc3Wu68erjELviYjJfDaTJ_f5kNB_OkIoSGRGqGU4QzpLOM1RnjNKM1yXjFUoq4ji4wZ1V0kVGaS8KKWiMqc5RztopWEO2C5_Peg7M_R-WD2Nqja-JJQWIbU0ILHFX4rKqc9d4pLQ7O7KU7CYxEC0-08EQLT1zgxZmn84xRSv3rC04Ji0_-Adr6Zv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703132391</pqid></control><display><type>article</type><title>A Hybrid Method for Dealing With DVL Faults of SINS/DVL Integrated Navigation System</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Jiupeng ; Li, An ; Qin, Fangjun ; Chang, Lubin ; Qian, Leiyuan</creator><creatorcontrib>Zhu, Jiupeng ; Li, An ; Qin, Fangjun ; Chang, Lubin ; Qian, Leiyuan</creatorcontrib><description>Aiming at the situation that the underwater integrated navigation system is easy to be disturbed and the output is unavailable during the task of underwater vehicle, a RVBAKF/ LSTM hybrid method is proposed in this paper. Considering the actual underwater working environment of autonomous underwater vehicles (AUV), the measured value of Doppler velocity log (DVL) is prone to outliers or even interruption, so it is very important to improve the fault tolerance of integrated navigation system. For the processing of outliers, a robust adaptive filter based on VB theory is proposed. Its advantage is to realize the adaptation of time-varying noise and reduce the interference of outliers to the integrated navigation system. Firstly, selecting the SINS output related to AUV velocity, such as velocity, attitude, angular velocity and specific force as the training input when the DVL output is normal. When DVL output is interrupted, the long short-term memory (LSTM) model is used to provide pseudo measurement values for integrated navigation system. The effectiveness of the method is verified by the on-board experimental data. When the DVL output is interrupted, the method can effectively improve the accuracy of the integrated navigation system. The method in this paper is compared with four different hybrid methods, and the results are obviously better than the four methods.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3189985</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive filters ; Angular velocity ; Autonomous underwater vehicles ; chi-square detection ; Chi-square test ; Covariance matrices ; Fault tolerance ; Information filters ; long short-term memory model ; Mathematical models ; Navigation ; Navigation systems ; Outliers (statistics) ; pseudo measurement ; robust adaptive filter ; Sensors ; SINS/DVL integrated navigation system ; Velocity ; Working conditions</subject><ispartof>IEEE sensors journal, 2022-08, Vol.22 (16), p.15844-15854</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-af5140160f665d658363d268c54308f998185c1556337a259df03a70785b43703</citedby><cites>FETCH-LOGICAL-c223t-af5140160f665d658363d268c54308f998185c1556337a259df03a70785b43703</cites><orcidid>0000-0001-7010-5762 ; 0000-0002-6777-2713 ; 0000-0002-6705-3401 ; 0000-0001-5431-4003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9832536$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9832536$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Jiupeng</creatorcontrib><creatorcontrib>Li, An</creatorcontrib><creatorcontrib>Qin, Fangjun</creatorcontrib><creatorcontrib>Chang, Lubin</creatorcontrib><creatorcontrib>Qian, Leiyuan</creatorcontrib><title>A Hybrid Method for Dealing With DVL Faults of SINS/DVL Integrated Navigation System</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Aiming at the situation that the underwater integrated navigation system is easy to be disturbed and the output is unavailable during the task of underwater vehicle, a RVBAKF/ LSTM hybrid method is proposed in this paper. Considering the actual underwater working environment of autonomous underwater vehicles (AUV), the measured value of Doppler velocity log (DVL) is prone to outliers or even interruption, so it is very important to improve the fault tolerance of integrated navigation system. For the processing of outliers, a robust adaptive filter based on VB theory is proposed. Its advantage is to realize the adaptation of time-varying noise and reduce the interference of outliers to the integrated navigation system. Firstly, selecting the SINS output related to AUV velocity, such as velocity, attitude, angular velocity and specific force as the training input when the DVL output is normal. When DVL output is interrupted, the long short-term memory (LSTM) model is used to provide pseudo measurement values for integrated navigation system. The effectiveness of the method is verified by the on-board experimental data. When the DVL output is interrupted, the method can effectively improve the accuracy of the integrated navigation system. The method in this paper is compared with four different hybrid methods, and the results are obviously better than the four methods.</description><subject>Adaptation models</subject><subject>Adaptive filters</subject><subject>Angular velocity</subject><subject>Autonomous underwater vehicles</subject><subject>chi-square detection</subject><subject>Chi-square test</subject><subject>Covariance matrices</subject><subject>Fault tolerance</subject><subject>Information filters</subject><subject>long short-term memory model</subject><subject>Mathematical models</subject><subject>Navigation</subject><subject>Navigation systems</subject><subject>Outliers (statistics)</subject><subject>pseudo measurement</subject><subject>robust adaptive filter</subject><subject>Sensors</subject><subject>SINS/DVL integrated navigation system</subject><subject>Velocity</subject><subject>Working conditions</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMluwjAQhq2qlUppH6DqxVLPAS9x4hwRS6Gi9BC63CyT2GAEMbVNJd6-jkA9zWjmn-X_AHjEqIcxKvqv5XjRI4iQHsW8KDi7Ah3MGE9wnvLrNqcoSWn-fQvuvN8ihIuc5R2wHMDpaeVMDd9U2NgaauvgSMmdadbwy4QNHH3O4UQed8FDq2E5W5T9tjRrglo7GVQNF_LXrGUwtoHlyQe1vwc3Wu68erjELviYjJfDaTJ_f5kNB_OkIoSGRGqGU4QzpLOM1RnjNKM1yXjFUoq4ji4wZ1V0kVGaS8KKWiMqc5RztopWEO2C5_Peg7M_R-WD2Nqja-JJQWIbU0ILHFX4rKqc9d4pLQ7O7KU7CYxEC0-08EQLT1zgxZmn84xRSv3rC04Ji0_-Adr6Zv8</recordid><startdate>20220815</startdate><enddate>20220815</enddate><creator>Zhu, Jiupeng</creator><creator>Li, An</creator><creator>Qin, Fangjun</creator><creator>Chang, Lubin</creator><creator>Qian, Leiyuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7010-5762</orcidid><orcidid>https://orcid.org/0000-0002-6777-2713</orcidid><orcidid>https://orcid.org/0000-0002-6705-3401</orcidid><orcidid>https://orcid.org/0000-0001-5431-4003</orcidid></search><sort><creationdate>20220815</creationdate><title>A Hybrid Method for Dealing With DVL Faults of SINS/DVL Integrated Navigation System</title><author>Zhu, Jiupeng ; Li, An ; Qin, Fangjun ; Chang, Lubin ; Qian, Leiyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-af5140160f665d658363d268c54308f998185c1556337a259df03a70785b43703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Adaptive filters</topic><topic>Angular velocity</topic><topic>Autonomous underwater vehicles</topic><topic>chi-square detection</topic><topic>Chi-square test</topic><topic>Covariance matrices</topic><topic>Fault tolerance</topic><topic>Information filters</topic><topic>long short-term memory model</topic><topic>Mathematical models</topic><topic>Navigation</topic><topic>Navigation systems</topic><topic>Outliers (statistics)</topic><topic>pseudo measurement</topic><topic>robust adaptive filter</topic><topic>Sensors</topic><topic>SINS/DVL integrated navigation system</topic><topic>Velocity</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jiupeng</creatorcontrib><creatorcontrib>Li, An</creatorcontrib><creatorcontrib>Qin, Fangjun</creatorcontrib><creatorcontrib>Chang, Lubin</creatorcontrib><creatorcontrib>Qian, Leiyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Jiupeng</au><au>Li, An</au><au>Qin, Fangjun</au><au>Chang, Lubin</au><au>Qian, Leiyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Method for Dealing With DVL Faults of SINS/DVL Integrated Navigation System</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-08-15</date><risdate>2022</risdate><volume>22</volume><issue>16</issue><spage>15844</spage><epage>15854</epage><pages>15844-15854</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Aiming at the situation that the underwater integrated navigation system is easy to be disturbed and the output is unavailable during the task of underwater vehicle, a RVBAKF/ LSTM hybrid method is proposed in this paper. Considering the actual underwater working environment of autonomous underwater vehicles (AUV), the measured value of Doppler velocity log (DVL) is prone to outliers or even interruption, so it is very important to improve the fault tolerance of integrated navigation system. For the processing of outliers, a robust adaptive filter based on VB theory is proposed. Its advantage is to realize the adaptation of time-varying noise and reduce the interference of outliers to the integrated navigation system. Firstly, selecting the SINS output related to AUV velocity, such as velocity, attitude, angular velocity and specific force as the training input when the DVL output is normal. When DVL output is interrupted, the long short-term memory (LSTM) model is used to provide pseudo measurement values for integrated navigation system. The effectiveness of the method is verified by the on-board experimental data. When the DVL output is interrupted, the method can effectively improve the accuracy of the integrated navigation system. The method in this paper is compared with four different hybrid methods, and the results are obviously better than the four methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3189985</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7010-5762</orcidid><orcidid>https://orcid.org/0000-0002-6777-2713</orcidid><orcidid>https://orcid.org/0000-0002-6705-3401</orcidid><orcidid>https://orcid.org/0000-0001-5431-4003</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2022-08, Vol.22 (16), p.15844-15854 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9832536 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Adaptive filters Angular velocity Autonomous underwater vehicles chi-square detection Chi-square test Covariance matrices Fault tolerance Information filters long short-term memory model Mathematical models Navigation Navigation systems Outliers (statistics) pseudo measurement robust adaptive filter Sensors SINS/DVL integrated navigation system Velocity Working conditions |
title | A Hybrid Method for Dealing With DVL Faults of SINS/DVL Integrated Navigation System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Method%20for%20Dealing%20With%20DVL%20Faults%20of%20SINS/DVL%20Integrated%20Navigation%20System&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhu,%20Jiupeng&rft.date=2022-08-15&rft.volume=22&rft.issue=16&rft.spage=15844&rft.epage=15854&rft.pages=15844-15854&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3189985&rft_dat=%3Cproquest_RIE%3E2703132391%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703132391&rft_id=info:pmid/&rft_ieee_id=9832536&rfr_iscdi=true |