Time-Triggered Federated Learning Over Wireless Networks

The newly emerging federated learning (FL) framework offers a new way to train machine learning models in a privacy-preserving manner. However, traditional FL algorithms are based on an event-triggered aggregation, which suffers from stragglers and communication overhead issues. To address these iss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2022-12, Vol.21 (12), p.11066-11079
Hauptverfasser: Zhou, Xiaokang, Deng, Yansha, Xia, Huiyun, Wu, Shaochuan, Bennis, Mehdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11079
container_issue 12
container_start_page 11066
container_title IEEE transactions on wireless communications
container_volume 21
creator Zhou, Xiaokang
Deng, Yansha
Xia, Huiyun
Wu, Shaochuan
Bennis, Mehdi
description The newly emerging federated learning (FL) framework offers a new way to train machine learning models in a privacy-preserving manner. However, traditional FL algorithms are based on an event-triggered aggregation, which suffers from stragglers and communication overhead issues. To address these issues, in this paper, we present a time-triggered FL algorithm (TT-Fed) over wireless networks, which is a generalized form of classic synchronous and asynchronous FL. Taking the constrained resource and unreliable nature of wireless communication into account, we jointly study the user selection and bandwidth optimization problem to minimize the FL training loss. To solve this joint optimization problem, we provide a thorough convergence analysis for TT-Fed. Based on the obtained analytical convergence upper bound, the optimization problem is decomposed into tractable sub-problems with respect to each global aggregation round, and finally solved by our proposed online search algorithm. Simulation results show that compared to asynchronous FL (FedAsync) and FL with asynchronous user tiers (FedAT) benchmarks, our proposed TT-Fed algorithm improves the converged test accuracy by up to 12.5% and 5%, respectively, under highly imbalanced and non-IID data, while substantially reducing the communication overhead.
doi_str_mv 10.1109/TWC.2022.3189601
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9831060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9831060</ieee_id><sourcerecordid>2748563688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-dc7f8f708038a152a18c81e1fd6d988804e149e22181a8be4d78110b1ded14b13</originalsourceid><addsrcrecordid>eNo9kEFLw0AQRhdRsFbvgpeA59SZ3WQzOUqxVSj2Eulx2WQnIbVt6m6q-O9NafE03-F9M8wT4h5hggj5U7GaTiRIOVFIuQa8ECNMU4qlTOjymJWOUWb6WtyEsAbATKfpSFDRbjkufNs07NlFM3bsbT-kBVu_a3dNtPxmH61azxsOIXrn_qfzn-FWXNV2E_juPMfiY_ZSTF_jxXL-Nn1exJVSqo9dldVUZ0CgyGIqLVJFyFg77XIigoQxyVlKJLRUcuIyGv4p0bHDpEQ1Fo-nvXvffR049GbdHfxuOGlkllCqlSYaKDhRle9C8FybvW-31v8aBHP0YwY_5ujHnP0MlYdTpWXmfzwnhaBB_QG52l-F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748563688</pqid></control><display><type>article</type><title>Time-Triggered Federated Learning Over Wireless Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Xiaokang ; Deng, Yansha ; Xia, Huiyun ; Wu, Shaochuan ; Bennis, Mehdi</creator><creatorcontrib>Zhou, Xiaokang ; Deng, Yansha ; Xia, Huiyun ; Wu, Shaochuan ; Bennis, Mehdi</creatorcontrib><description>The newly emerging federated learning (FL) framework offers a new way to train machine learning models in a privacy-preserving manner. However, traditional FL algorithms are based on an event-triggered aggregation, which suffers from stragglers and communication overhead issues. To address these issues, in this paper, we present a time-triggered FL algorithm (TT-Fed) over wireless networks, which is a generalized form of classic synchronous and asynchronous FL. Taking the constrained resource and unreliable nature of wireless communication into account, we jointly study the user selection and bandwidth optimization problem to minimize the FL training loss. To solve this joint optimization problem, we provide a thorough convergence analysis for TT-Fed. Based on the obtained analytical convergence upper bound, the optimization problem is decomposed into tractable sub-problems with respect to each global aggregation round, and finally solved by our proposed online search algorithm. Simulation results show that compared to asynchronous FL (FedAsync) and FL with asynchronous user tiers (FedAT) benchmarks, our proposed TT-Fed algorithm improves the converged test accuracy by up to 12.5% and 5%, respectively, under highly imbalanced and non-IID data, while substantially reducing the communication overhead.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2022.3189601</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agglomeration ; Algorithms ; Communication ; Computational modeling ; Convergence ; convergence analysis ; Federated learning ; Machine learning ; Optimization ; resource allocation ; Resource management ; Search algorithms ; Servers ; Synchronization ; Upper bounds ; Wireless communications ; Wireless networks</subject><ispartof>IEEE transactions on wireless communications, 2022-12, Vol.21 (12), p.11066-11079</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-dc7f8f708038a152a18c81e1fd6d988804e149e22181a8be4d78110b1ded14b13</citedby><cites>FETCH-LOGICAL-c333t-dc7f8f708038a152a18c81e1fd6d988804e149e22181a8be4d78110b1ded14b13</cites><orcidid>0000-0003-0261-0171 ; 0000-0002-7234-5273 ; 0000-0003-1001-7036 ; 0000-0002-2362-3126 ; 0000-0001-5639-1694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9831060$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9831060$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Xiaokang</creatorcontrib><creatorcontrib>Deng, Yansha</creatorcontrib><creatorcontrib>Xia, Huiyun</creatorcontrib><creatorcontrib>Wu, Shaochuan</creatorcontrib><creatorcontrib>Bennis, Mehdi</creatorcontrib><title>Time-Triggered Federated Learning Over Wireless Networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>The newly emerging federated learning (FL) framework offers a new way to train machine learning models in a privacy-preserving manner. However, traditional FL algorithms are based on an event-triggered aggregation, which suffers from stragglers and communication overhead issues. To address these issues, in this paper, we present a time-triggered FL algorithm (TT-Fed) over wireless networks, which is a generalized form of classic synchronous and asynchronous FL. Taking the constrained resource and unreliable nature of wireless communication into account, we jointly study the user selection and bandwidth optimization problem to minimize the FL training loss. To solve this joint optimization problem, we provide a thorough convergence analysis for TT-Fed. Based on the obtained analytical convergence upper bound, the optimization problem is decomposed into tractable sub-problems with respect to each global aggregation round, and finally solved by our proposed online search algorithm. Simulation results show that compared to asynchronous FL (FedAsync) and FL with asynchronous user tiers (FedAT) benchmarks, our proposed TT-Fed algorithm improves the converged test accuracy by up to 12.5% and 5%, respectively, under highly imbalanced and non-IID data, while substantially reducing the communication overhead.</description><subject>Agglomeration</subject><subject>Algorithms</subject><subject>Communication</subject><subject>Computational modeling</subject><subject>Convergence</subject><subject>convergence analysis</subject><subject>Federated learning</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>resource allocation</subject><subject>Resource management</subject><subject>Search algorithms</subject><subject>Servers</subject><subject>Synchronization</subject><subject>Upper bounds</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQRhdRsFbvgpeA59SZ3WQzOUqxVSj2Eulx2WQnIbVt6m6q-O9NafE03-F9M8wT4h5hggj5U7GaTiRIOVFIuQa8ECNMU4qlTOjymJWOUWb6WtyEsAbATKfpSFDRbjkufNs07NlFM3bsbT-kBVu_a3dNtPxmH61azxsOIXrn_qfzn-FWXNV2E_juPMfiY_ZSTF_jxXL-Nn1exJVSqo9dldVUZ0CgyGIqLVJFyFg77XIigoQxyVlKJLRUcuIyGv4p0bHDpEQ1Fo-nvXvffR049GbdHfxuOGlkllCqlSYaKDhRle9C8FybvW-31v8aBHP0YwY_5ujHnP0MlYdTpWXmfzwnhaBB_QG52l-F</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Zhou, Xiaokang</creator><creator>Deng, Yansha</creator><creator>Xia, Huiyun</creator><creator>Wu, Shaochuan</creator><creator>Bennis, Mehdi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0261-0171</orcidid><orcidid>https://orcid.org/0000-0002-7234-5273</orcidid><orcidid>https://orcid.org/0000-0003-1001-7036</orcidid><orcidid>https://orcid.org/0000-0002-2362-3126</orcidid><orcidid>https://orcid.org/0000-0001-5639-1694</orcidid></search><sort><creationdate>202212</creationdate><title>Time-Triggered Federated Learning Over Wireless Networks</title><author>Zhou, Xiaokang ; Deng, Yansha ; Xia, Huiyun ; Wu, Shaochuan ; Bennis, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-dc7f8f708038a152a18c81e1fd6d988804e149e22181a8be4d78110b1ded14b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agglomeration</topic><topic>Algorithms</topic><topic>Communication</topic><topic>Computational modeling</topic><topic>Convergence</topic><topic>convergence analysis</topic><topic>Federated learning</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>resource allocation</topic><topic>Resource management</topic><topic>Search algorithms</topic><topic>Servers</topic><topic>Synchronization</topic><topic>Upper bounds</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiaokang</creatorcontrib><creatorcontrib>Deng, Yansha</creatorcontrib><creatorcontrib>Xia, Huiyun</creatorcontrib><creatorcontrib>Wu, Shaochuan</creatorcontrib><creatorcontrib>Bennis, Mehdi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Xiaokang</au><au>Deng, Yansha</au><au>Xia, Huiyun</au><au>Wu, Shaochuan</au><au>Bennis, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Triggered Federated Learning Over Wireless Networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2022-12</date><risdate>2022</risdate><volume>21</volume><issue>12</issue><spage>11066</spage><epage>11079</epage><pages>11066-11079</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>The newly emerging federated learning (FL) framework offers a new way to train machine learning models in a privacy-preserving manner. However, traditional FL algorithms are based on an event-triggered aggregation, which suffers from stragglers and communication overhead issues. To address these issues, in this paper, we present a time-triggered FL algorithm (TT-Fed) over wireless networks, which is a generalized form of classic synchronous and asynchronous FL. Taking the constrained resource and unreliable nature of wireless communication into account, we jointly study the user selection and bandwidth optimization problem to minimize the FL training loss. To solve this joint optimization problem, we provide a thorough convergence analysis for TT-Fed. Based on the obtained analytical convergence upper bound, the optimization problem is decomposed into tractable sub-problems with respect to each global aggregation round, and finally solved by our proposed online search algorithm. Simulation results show that compared to asynchronous FL (FedAsync) and FL with asynchronous user tiers (FedAT) benchmarks, our proposed TT-Fed algorithm improves the converged test accuracy by up to 12.5% and 5%, respectively, under highly imbalanced and non-IID data, while substantially reducing the communication overhead.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2022.3189601</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0261-0171</orcidid><orcidid>https://orcid.org/0000-0002-7234-5273</orcidid><orcidid>https://orcid.org/0000-0003-1001-7036</orcidid><orcidid>https://orcid.org/0000-0002-2362-3126</orcidid><orcidid>https://orcid.org/0000-0001-5639-1694</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2022-12, Vol.21 (12), p.11066-11079
issn 1536-1276
1558-2248
language eng
recordid cdi_ieee_primary_9831060
source IEEE Electronic Library (IEL)
subjects Agglomeration
Algorithms
Communication
Computational modeling
Convergence
convergence analysis
Federated learning
Machine learning
Optimization
resource allocation
Resource management
Search algorithms
Servers
Synchronization
Upper bounds
Wireless communications
Wireless networks
title Time-Triggered Federated Learning Over Wireless Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A33%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Triggered%20Federated%20Learning%20Over%20Wireless%20Networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Zhou,%20Xiaokang&rft.date=2022-12&rft.volume=21&rft.issue=12&rft.spage=11066&rft.epage=11079&rft.pages=11066-11079&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2022.3189601&rft_dat=%3Cproquest_RIE%3E2748563688%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748563688&rft_id=info:pmid/&rft_ieee_id=9831060&rfr_iscdi=true