Time-Triggered Federated Learning Over Wireless Networks
The newly emerging federated learning (FL) framework offers a new way to train machine learning models in a privacy-preserving manner. However, traditional FL algorithms are based on an event-triggered aggregation, which suffers from stragglers and communication overhead issues. To address these iss...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2022-12, Vol.21 (12), p.11066-11079 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11079 |
---|---|
container_issue | 12 |
container_start_page | 11066 |
container_title | IEEE transactions on wireless communications |
container_volume | 21 |
creator | Zhou, Xiaokang Deng, Yansha Xia, Huiyun Wu, Shaochuan Bennis, Mehdi |
description | The newly emerging federated learning (FL) framework offers a new way to train machine learning models in a privacy-preserving manner. However, traditional FL algorithms are based on an event-triggered aggregation, which suffers from stragglers and communication overhead issues. To address these issues, in this paper, we present a time-triggered FL algorithm (TT-Fed) over wireless networks, which is a generalized form of classic synchronous and asynchronous FL. Taking the constrained resource and unreliable nature of wireless communication into account, we jointly study the user selection and bandwidth optimization problem to minimize the FL training loss. To solve this joint optimization problem, we provide a thorough convergence analysis for TT-Fed. Based on the obtained analytical convergence upper bound, the optimization problem is decomposed into tractable sub-problems with respect to each global aggregation round, and finally solved by our proposed online search algorithm. Simulation results show that compared to asynchronous FL (FedAsync) and FL with asynchronous user tiers (FedAT) benchmarks, our proposed TT-Fed algorithm improves the converged test accuracy by up to 12.5% and 5%, respectively, under highly imbalanced and non-IID data, while substantially reducing the communication overhead. |
doi_str_mv | 10.1109/TWC.2022.3189601 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9831060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9831060</ieee_id><sourcerecordid>2748563688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-dc7f8f708038a152a18c81e1fd6d988804e149e22181a8be4d78110b1ded14b13</originalsourceid><addsrcrecordid>eNo9kEFLw0AQRhdRsFbvgpeA59SZ3WQzOUqxVSj2Eulx2WQnIbVt6m6q-O9NafE03-F9M8wT4h5hggj5U7GaTiRIOVFIuQa8ECNMU4qlTOjymJWOUWb6WtyEsAbATKfpSFDRbjkufNs07NlFM3bsbT-kBVu_a3dNtPxmH61azxsOIXrn_qfzn-FWXNV2E_juPMfiY_ZSTF_jxXL-Nn1exJVSqo9dldVUZ0CgyGIqLVJFyFg77XIigoQxyVlKJLRUcuIyGv4p0bHDpEQ1Fo-nvXvffR049GbdHfxuOGlkllCqlSYaKDhRle9C8FybvW-31v8aBHP0YwY_5ujHnP0MlYdTpWXmfzwnhaBB_QG52l-F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748563688</pqid></control><display><type>article</type><title>Time-Triggered Federated Learning Over Wireless Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Xiaokang ; Deng, Yansha ; Xia, Huiyun ; Wu, Shaochuan ; Bennis, Mehdi</creator><creatorcontrib>Zhou, Xiaokang ; Deng, Yansha ; Xia, Huiyun ; Wu, Shaochuan ; Bennis, Mehdi</creatorcontrib><description>The newly emerging federated learning (FL) framework offers a new way to train machine learning models in a privacy-preserving manner. However, traditional FL algorithms are based on an event-triggered aggregation, which suffers from stragglers and communication overhead issues. To address these issues, in this paper, we present a time-triggered FL algorithm (TT-Fed) over wireless networks, which is a generalized form of classic synchronous and asynchronous FL. Taking the constrained resource and unreliable nature of wireless communication into account, we jointly study the user selection and bandwidth optimization problem to minimize the FL training loss. To solve this joint optimization problem, we provide a thorough convergence analysis for TT-Fed. Based on the obtained analytical convergence upper bound, the optimization problem is decomposed into tractable sub-problems with respect to each global aggregation round, and finally solved by our proposed online search algorithm. Simulation results show that compared to asynchronous FL (FedAsync) and FL with asynchronous user tiers (FedAT) benchmarks, our proposed TT-Fed algorithm improves the converged test accuracy by up to 12.5% and 5%, respectively, under highly imbalanced and non-IID data, while substantially reducing the communication overhead.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2022.3189601</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agglomeration ; Algorithms ; Communication ; Computational modeling ; Convergence ; convergence analysis ; Federated learning ; Machine learning ; Optimization ; resource allocation ; Resource management ; Search algorithms ; Servers ; Synchronization ; Upper bounds ; Wireless communications ; Wireless networks</subject><ispartof>IEEE transactions on wireless communications, 2022-12, Vol.21 (12), p.11066-11079</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-dc7f8f708038a152a18c81e1fd6d988804e149e22181a8be4d78110b1ded14b13</citedby><cites>FETCH-LOGICAL-c333t-dc7f8f708038a152a18c81e1fd6d988804e149e22181a8be4d78110b1ded14b13</cites><orcidid>0000-0003-0261-0171 ; 0000-0002-7234-5273 ; 0000-0003-1001-7036 ; 0000-0002-2362-3126 ; 0000-0001-5639-1694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9831060$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9831060$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Xiaokang</creatorcontrib><creatorcontrib>Deng, Yansha</creatorcontrib><creatorcontrib>Xia, Huiyun</creatorcontrib><creatorcontrib>Wu, Shaochuan</creatorcontrib><creatorcontrib>Bennis, Mehdi</creatorcontrib><title>Time-Triggered Federated Learning Over Wireless Networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>The newly emerging federated learning (FL) framework offers a new way to train machine learning models in a privacy-preserving manner. However, traditional FL algorithms are based on an event-triggered aggregation, which suffers from stragglers and communication overhead issues. To address these issues, in this paper, we present a time-triggered FL algorithm (TT-Fed) over wireless networks, which is a generalized form of classic synchronous and asynchronous FL. Taking the constrained resource and unreliable nature of wireless communication into account, we jointly study the user selection and bandwidth optimization problem to minimize the FL training loss. To solve this joint optimization problem, we provide a thorough convergence analysis for TT-Fed. Based on the obtained analytical convergence upper bound, the optimization problem is decomposed into tractable sub-problems with respect to each global aggregation round, and finally solved by our proposed online search algorithm. Simulation results show that compared to asynchronous FL (FedAsync) and FL with asynchronous user tiers (FedAT) benchmarks, our proposed TT-Fed algorithm improves the converged test accuracy by up to 12.5% and 5%, respectively, under highly imbalanced and non-IID data, while substantially reducing the communication overhead.</description><subject>Agglomeration</subject><subject>Algorithms</subject><subject>Communication</subject><subject>Computational modeling</subject><subject>Convergence</subject><subject>convergence analysis</subject><subject>Federated learning</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>resource allocation</subject><subject>Resource management</subject><subject>Search algorithms</subject><subject>Servers</subject><subject>Synchronization</subject><subject>Upper bounds</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQRhdRsFbvgpeA59SZ3WQzOUqxVSj2Eulx2WQnIbVt6m6q-O9NafE03-F9M8wT4h5hggj5U7GaTiRIOVFIuQa8ECNMU4qlTOjymJWOUWb6WtyEsAbATKfpSFDRbjkufNs07NlFM3bsbT-kBVu_a3dNtPxmH61azxsOIXrn_qfzn-FWXNV2E_juPMfiY_ZSTF_jxXL-Nn1exJVSqo9dldVUZ0CgyGIqLVJFyFg77XIigoQxyVlKJLRUcuIyGv4p0bHDpEQ1Fo-nvXvffR049GbdHfxuOGlkllCqlSYaKDhRle9C8FybvW-31v8aBHP0YwY_5ujHnP0MlYdTpWXmfzwnhaBB_QG52l-F</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Zhou, Xiaokang</creator><creator>Deng, Yansha</creator><creator>Xia, Huiyun</creator><creator>Wu, Shaochuan</creator><creator>Bennis, Mehdi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0261-0171</orcidid><orcidid>https://orcid.org/0000-0002-7234-5273</orcidid><orcidid>https://orcid.org/0000-0003-1001-7036</orcidid><orcidid>https://orcid.org/0000-0002-2362-3126</orcidid><orcidid>https://orcid.org/0000-0001-5639-1694</orcidid></search><sort><creationdate>202212</creationdate><title>Time-Triggered Federated Learning Over Wireless Networks</title><author>Zhou, Xiaokang ; Deng, Yansha ; Xia, Huiyun ; Wu, Shaochuan ; Bennis, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-dc7f8f708038a152a18c81e1fd6d988804e149e22181a8be4d78110b1ded14b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agglomeration</topic><topic>Algorithms</topic><topic>Communication</topic><topic>Computational modeling</topic><topic>Convergence</topic><topic>convergence analysis</topic><topic>Federated learning</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>resource allocation</topic><topic>Resource management</topic><topic>Search algorithms</topic><topic>Servers</topic><topic>Synchronization</topic><topic>Upper bounds</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiaokang</creatorcontrib><creatorcontrib>Deng, Yansha</creatorcontrib><creatorcontrib>Xia, Huiyun</creatorcontrib><creatorcontrib>Wu, Shaochuan</creatorcontrib><creatorcontrib>Bennis, Mehdi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Xiaokang</au><au>Deng, Yansha</au><au>Xia, Huiyun</au><au>Wu, Shaochuan</au><au>Bennis, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Triggered Federated Learning Over Wireless Networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2022-12</date><risdate>2022</risdate><volume>21</volume><issue>12</issue><spage>11066</spage><epage>11079</epage><pages>11066-11079</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>The newly emerging federated learning (FL) framework offers a new way to train machine learning models in a privacy-preserving manner. However, traditional FL algorithms are based on an event-triggered aggregation, which suffers from stragglers and communication overhead issues. To address these issues, in this paper, we present a time-triggered FL algorithm (TT-Fed) over wireless networks, which is a generalized form of classic synchronous and asynchronous FL. Taking the constrained resource and unreliable nature of wireless communication into account, we jointly study the user selection and bandwidth optimization problem to minimize the FL training loss. To solve this joint optimization problem, we provide a thorough convergence analysis for TT-Fed. Based on the obtained analytical convergence upper bound, the optimization problem is decomposed into tractable sub-problems with respect to each global aggregation round, and finally solved by our proposed online search algorithm. Simulation results show that compared to asynchronous FL (FedAsync) and FL with asynchronous user tiers (FedAT) benchmarks, our proposed TT-Fed algorithm improves the converged test accuracy by up to 12.5% and 5%, respectively, under highly imbalanced and non-IID data, while substantially reducing the communication overhead.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2022.3189601</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0261-0171</orcidid><orcidid>https://orcid.org/0000-0002-7234-5273</orcidid><orcidid>https://orcid.org/0000-0003-1001-7036</orcidid><orcidid>https://orcid.org/0000-0002-2362-3126</orcidid><orcidid>https://orcid.org/0000-0001-5639-1694</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2022-12, Vol.21 (12), p.11066-11079 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_ieee_primary_9831060 |
source | IEEE Electronic Library (IEL) |
subjects | Agglomeration Algorithms Communication Computational modeling Convergence convergence analysis Federated learning Machine learning Optimization resource allocation Resource management Search algorithms Servers Synchronization Upper bounds Wireless communications Wireless networks |
title | Time-Triggered Federated Learning Over Wireless Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A33%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Triggered%20Federated%20Learning%20Over%20Wireless%20Networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Zhou,%20Xiaokang&rft.date=2022-12&rft.volume=21&rft.issue=12&rft.spage=11066&rft.epage=11079&rft.pages=11066-11079&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2022.3189601&rft_dat=%3Cproquest_RIE%3E2748563688%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748563688&rft_id=info:pmid/&rft_ieee_id=9831060&rfr_iscdi=true |