Inference Skipping for More Efficient Real-Time Speech Enhancement With Parallel RNNs
Deep neural network (DNN) based speech enhancement models have attracted extensive attention due to their promising performance. However, it is difficult to deploy a powerful DNN in real-time applications because of its high computational cost. Typical compression methods such as pruning and quantiz...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2022, Vol.30, p.2411-2421 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!