Mitigating Malicious Adversaries Evasion Attacks in Industrial Internet of Things
With advanced 5G/6G networks, data-driven interconnected devices will increase exponentially. As a result, the Industrial Internet of Things (IIoT) requires data secure information extraction to apply digital services, medical diagnoses, and financial forecasting. This introduction of high-speed net...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2023-01, Vol.19 (1), p.960-968 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 968 |
---|---|
container_issue | 1 |
container_start_page | 960 |
container_title | IEEE transactions on industrial informatics |
container_volume | 19 |
creator | Rafiq, Husnain Aslam, Nauman Ahmed, Usman Lin, Jerry Chun-Wei |
description | With advanced 5G/6G networks, data-driven interconnected devices will increase exponentially. As a result, the Industrial Internet of Things (IIoT) requires data secure information extraction to apply digital services, medical diagnoses, and financial forecasting. This introduction of high-speed network mobile applications will also adapt. As a consequence, the scale and complexity of Android malware are rising. Detection of malware classification is vulnerable to attacks. A fabricated feature can force misclassification to produce the desired output. This article proposes a subset feature selection method to evade fabricated attacks in the IIoT environment. The method extracts application-aware features from a single android application to train an independent classification model. Ensemble-based learning is then used to train the distinct classification models. Finally, the collaborative ML classifier makes independent decisions to fight against adversarial evasion attacks. We compare and evaluate the benchmark Android malware dataset. The proposed method achieved 91% accuracy with 14 fabricated input features. |
doi_str_mv | 10.1109/TII.2022.3189046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9817648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9817648</ieee_id><sourcerecordid>2734387014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-b1c8ee4afcbe7befc66babd1fe37baa840ecd5e958d88abbe32e64ef54016e993</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvAc-dLk7bJcYyphQ0R5jkk6evMnO1MsoH_vR0bnt53-H3fgx8h9wwmjIF6WtX1JIc8n3AmFYjygoyYEiwDKOByyEXBMp4DvyY3MW4AeAVcjcj70ie_Nsl3a7o0W-98v4902hwwRBM8Rjo_mOj7jk5TMu4rUt_Rumv2MQVvtkNMGDpMtG_p6nNYibfkqjXbiHfnOyYfz_PV7DVbvL3Us-kic3nJU2aZk4jCtM5iZbF1ZWmNbViLvLLGSAHomgJVIRspjbXIcywFtoUAVqJSfEweT7u70P_sMSa96fehG17qvOKCywqYGCg4US70MQZs9S74bxN-NQN9FKcHcfooTp_FDZWHU8Uj4j-uJKtKIfkfRlVrbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734387014</pqid></control><display><type>article</type><title>Mitigating Malicious Adversaries Evasion Attacks in Industrial Internet of Things</title><source>IEEE Electronic Library (IEL)</source><creator>Rafiq, Husnain ; Aslam, Nauman ; Ahmed, Usman ; Lin, Jerry Chun-Wei</creator><creatorcontrib>Rafiq, Husnain ; Aslam, Nauman ; Ahmed, Usman ; Lin, Jerry Chun-Wei</creatorcontrib><description>With advanced 5G/6G networks, data-driven interconnected devices will increase exponentially. As a result, the Industrial Internet of Things (IIoT) requires data secure information extraction to apply digital services, medical diagnoses, and financial forecasting. This introduction of high-speed network mobile applications will also adapt. As a consequence, the scale and complexity of Android malware are rising. Detection of malware classification is vulnerable to attacks. A fabricated feature can force misclassification to produce the desired output. This article proposes a subset feature selection method to evade fabricated attacks in the IIoT environment. The method extracts application-aware features from a single android application to train an independent classification model. Ensemble-based learning is then used to train the distinct classification models. Finally, the collaborative ML classifier makes independent decisions to fight against adversarial evasion attacks. We compare and evaluate the benchmark Android malware dataset. The proposed method achieved 91% accuracy with 14 fabricated input features.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2022.3189046</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adversarial attacks ; Analytical models ; Android ; Applications programs ; Classification ; Electronic devices ; Feature extraction ; Industrial applications ; Industrial Internet of Things ; Industrial Internet of Things (IIoT) ; Information retrieval ; Internet of Things ; Malware ; Mobile computing ; Object recognition ; Smart phones ; Static analysis</subject><ispartof>IEEE transactions on industrial informatics, 2023-01, Vol.19 (1), p.960-968</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-b1c8ee4afcbe7befc66babd1fe37baa840ecd5e958d88abbe32e64ef54016e993</citedby><cites>FETCH-LOGICAL-c263t-b1c8ee4afcbe7befc66babd1fe37baa840ecd5e958d88abbe32e64ef54016e993</cites><orcidid>0000-0002-3933-4273 ; 0000-0002-9500-3970 ; 0000-0003-0920-0060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9817648$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9817648$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rafiq, Husnain</creatorcontrib><creatorcontrib>Aslam, Nauman</creatorcontrib><creatorcontrib>Ahmed, Usman</creatorcontrib><creatorcontrib>Lin, Jerry Chun-Wei</creatorcontrib><title>Mitigating Malicious Adversaries Evasion Attacks in Industrial Internet of Things</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>With advanced 5G/6G networks, data-driven interconnected devices will increase exponentially. As a result, the Industrial Internet of Things (IIoT) requires data secure information extraction to apply digital services, medical diagnoses, and financial forecasting. This introduction of high-speed network mobile applications will also adapt. As a consequence, the scale and complexity of Android malware are rising. Detection of malware classification is vulnerable to attacks. A fabricated feature can force misclassification to produce the desired output. This article proposes a subset feature selection method to evade fabricated attacks in the IIoT environment. The method extracts application-aware features from a single android application to train an independent classification model. Ensemble-based learning is then used to train the distinct classification models. Finally, the collaborative ML classifier makes independent decisions to fight against adversarial evasion attacks. We compare and evaluate the benchmark Android malware dataset. The proposed method achieved 91% accuracy with 14 fabricated input features.</description><subject>Adversarial attacks</subject><subject>Analytical models</subject><subject>Android</subject><subject>Applications programs</subject><subject>Classification</subject><subject>Electronic devices</subject><subject>Feature extraction</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>Industrial Internet of Things (IIoT)</subject><subject>Information retrieval</subject><subject>Internet of Things</subject><subject>Malware</subject><subject>Mobile computing</subject><subject>Object recognition</subject><subject>Smart phones</subject><subject>Static analysis</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUxoMoOKd3wUvAc-dLk7bJcYyphQ0R5jkk6evMnO1MsoH_vR0bnt53-H3fgx8h9wwmjIF6WtX1JIc8n3AmFYjygoyYEiwDKOByyEXBMp4DvyY3MW4AeAVcjcj70ie_Nsl3a7o0W-98v4902hwwRBM8Rjo_mOj7jk5TMu4rUt_Rumv2MQVvtkNMGDpMtG_p6nNYibfkqjXbiHfnOyYfz_PV7DVbvL3Us-kic3nJU2aZk4jCtM5iZbF1ZWmNbViLvLLGSAHomgJVIRspjbXIcywFtoUAVqJSfEweT7u70P_sMSa96fehG17qvOKCywqYGCg4US70MQZs9S74bxN-NQN9FKcHcfooTp_FDZWHU8Uj4j-uJKtKIfkfRlVrbw</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Rafiq, Husnain</creator><creator>Aslam, Nauman</creator><creator>Ahmed, Usman</creator><creator>Lin, Jerry Chun-Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3933-4273</orcidid><orcidid>https://orcid.org/0000-0002-9500-3970</orcidid><orcidid>https://orcid.org/0000-0003-0920-0060</orcidid></search><sort><creationdate>202301</creationdate><title>Mitigating Malicious Adversaries Evasion Attacks in Industrial Internet of Things</title><author>Rafiq, Husnain ; Aslam, Nauman ; Ahmed, Usman ; Lin, Jerry Chun-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-b1c8ee4afcbe7befc66babd1fe37baa840ecd5e958d88abbe32e64ef54016e993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adversarial attacks</topic><topic>Analytical models</topic><topic>Android</topic><topic>Applications programs</topic><topic>Classification</topic><topic>Electronic devices</topic><topic>Feature extraction</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>Industrial Internet of Things (IIoT)</topic><topic>Information retrieval</topic><topic>Internet of Things</topic><topic>Malware</topic><topic>Mobile computing</topic><topic>Object recognition</topic><topic>Smart phones</topic><topic>Static analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Rafiq, Husnain</creatorcontrib><creatorcontrib>Aslam, Nauman</creatorcontrib><creatorcontrib>Ahmed, Usman</creatorcontrib><creatorcontrib>Lin, Jerry Chun-Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rafiq, Husnain</au><au>Aslam, Nauman</au><au>Ahmed, Usman</au><au>Lin, Jerry Chun-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitigating Malicious Adversaries Evasion Attacks in Industrial Internet of Things</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-01</date><risdate>2023</risdate><volume>19</volume><issue>1</issue><spage>960</spage><epage>968</epage><pages>960-968</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>With advanced 5G/6G networks, data-driven interconnected devices will increase exponentially. As a result, the Industrial Internet of Things (IIoT) requires data secure information extraction to apply digital services, medical diagnoses, and financial forecasting. This introduction of high-speed network mobile applications will also adapt. As a consequence, the scale and complexity of Android malware are rising. Detection of malware classification is vulnerable to attacks. A fabricated feature can force misclassification to produce the desired output. This article proposes a subset feature selection method to evade fabricated attacks in the IIoT environment. The method extracts application-aware features from a single android application to train an independent classification model. Ensemble-based learning is then used to train the distinct classification models. Finally, the collaborative ML classifier makes independent decisions to fight against adversarial evasion attacks. We compare and evaluate the benchmark Android malware dataset. The proposed method achieved 91% accuracy with 14 fabricated input features.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2022.3189046</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3933-4273</orcidid><orcidid>https://orcid.org/0000-0002-9500-3970</orcidid><orcidid>https://orcid.org/0000-0003-0920-0060</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2023-01, Vol.19 (1), p.960-968 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_ieee_primary_9817648 |
source | IEEE Electronic Library (IEL) |
subjects | Adversarial attacks Analytical models Android Applications programs Classification Electronic devices Feature extraction Industrial applications Industrial Internet of Things Industrial Internet of Things (IIoT) Information retrieval Internet of Things Malware Mobile computing Object recognition Smart phones Static analysis |
title | Mitigating Malicious Adversaries Evasion Attacks in Industrial Internet of Things |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitigating%20Malicious%20Adversaries%20Evasion%20Attacks%20in%20Industrial%20Internet%20of%20Things&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Rafiq,%20Husnain&rft.date=2023-01&rft.volume=19&rft.issue=1&rft.spage=960&rft.epage=968&rft.pages=960-968&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2022.3189046&rft_dat=%3Cproquest_RIE%3E2734387014%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734387014&rft_id=info:pmid/&rft_ieee_id=9817648&rfr_iscdi=true |