Mitigating Malicious Adversaries Evasion Attacks in Industrial Internet of Things

With advanced 5G/6G networks, data-driven interconnected devices will increase exponentially. As a result, the Industrial Internet of Things (IIoT) requires data secure information extraction to apply digital services, medical diagnoses, and financial forecasting. This introduction of high-speed net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2023-01, Vol.19 (1), p.960-968
Hauptverfasser: Rafiq, Husnain, Aslam, Nauman, Ahmed, Usman, Lin, Jerry Chun-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 968
container_issue 1
container_start_page 960
container_title IEEE transactions on industrial informatics
container_volume 19
creator Rafiq, Husnain
Aslam, Nauman
Ahmed, Usman
Lin, Jerry Chun-Wei
description With advanced 5G/6G networks, data-driven interconnected devices will increase exponentially. As a result, the Industrial Internet of Things (IIoT) requires data secure information extraction to apply digital services, medical diagnoses, and financial forecasting. This introduction of high-speed network mobile applications will also adapt. As a consequence, the scale and complexity of Android malware are rising. Detection of malware classification is vulnerable to attacks. A fabricated feature can force misclassification to produce the desired output. This article proposes a subset feature selection method to evade fabricated attacks in the IIoT environment. The method extracts application-aware features from a single android application to train an independent classification model. Ensemble-based learning is then used to train the distinct classification models. Finally, the collaborative ML classifier makes independent decisions to fight against adversarial evasion attacks. We compare and evaluate the benchmark Android malware dataset. The proposed method achieved 91% accuracy with 14 fabricated input features.
doi_str_mv 10.1109/TII.2022.3189046
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9817648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9817648</ieee_id><sourcerecordid>2734387014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-b1c8ee4afcbe7befc66babd1fe37baa840ecd5e958d88abbe32e64ef54016e993</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvAc-dLk7bJcYyphQ0R5jkk6evMnO1MsoH_vR0bnt53-H3fgx8h9wwmjIF6WtX1JIc8n3AmFYjygoyYEiwDKOByyEXBMp4DvyY3MW4AeAVcjcj70ie_Nsl3a7o0W-98v4902hwwRBM8Rjo_mOj7jk5TMu4rUt_Rumv2MQVvtkNMGDpMtG_p6nNYibfkqjXbiHfnOyYfz_PV7DVbvL3Us-kic3nJU2aZk4jCtM5iZbF1ZWmNbViLvLLGSAHomgJVIRspjbXIcywFtoUAVqJSfEweT7u70P_sMSa96fehG17qvOKCywqYGCg4US70MQZs9S74bxN-NQN9FKcHcfooTp_FDZWHU8Uj4j-uJKtKIfkfRlVrbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734387014</pqid></control><display><type>article</type><title>Mitigating Malicious Adversaries Evasion Attacks in Industrial Internet of Things</title><source>IEEE Electronic Library (IEL)</source><creator>Rafiq, Husnain ; Aslam, Nauman ; Ahmed, Usman ; Lin, Jerry Chun-Wei</creator><creatorcontrib>Rafiq, Husnain ; Aslam, Nauman ; Ahmed, Usman ; Lin, Jerry Chun-Wei</creatorcontrib><description>With advanced 5G/6G networks, data-driven interconnected devices will increase exponentially. As a result, the Industrial Internet of Things (IIoT) requires data secure information extraction to apply digital services, medical diagnoses, and financial forecasting. This introduction of high-speed network mobile applications will also adapt. As a consequence, the scale and complexity of Android malware are rising. Detection of malware classification is vulnerable to attacks. A fabricated feature can force misclassification to produce the desired output. This article proposes a subset feature selection method to evade fabricated attacks in the IIoT environment. The method extracts application-aware features from a single android application to train an independent classification model. Ensemble-based learning is then used to train the distinct classification models. Finally, the collaborative ML classifier makes independent decisions to fight against adversarial evasion attacks. We compare and evaluate the benchmark Android malware dataset. The proposed method achieved 91% accuracy with 14 fabricated input features.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2022.3189046</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adversarial attacks ; Analytical models ; Android ; Applications programs ; Classification ; Electronic devices ; Feature extraction ; Industrial applications ; Industrial Internet of Things ; Industrial Internet of Things (IIoT) ; Information retrieval ; Internet of Things ; Malware ; Mobile computing ; Object recognition ; Smart phones ; Static analysis</subject><ispartof>IEEE transactions on industrial informatics, 2023-01, Vol.19 (1), p.960-968</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-b1c8ee4afcbe7befc66babd1fe37baa840ecd5e958d88abbe32e64ef54016e993</citedby><cites>FETCH-LOGICAL-c263t-b1c8ee4afcbe7befc66babd1fe37baa840ecd5e958d88abbe32e64ef54016e993</cites><orcidid>0000-0002-3933-4273 ; 0000-0002-9500-3970 ; 0000-0003-0920-0060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9817648$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9817648$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rafiq, Husnain</creatorcontrib><creatorcontrib>Aslam, Nauman</creatorcontrib><creatorcontrib>Ahmed, Usman</creatorcontrib><creatorcontrib>Lin, Jerry Chun-Wei</creatorcontrib><title>Mitigating Malicious Adversaries Evasion Attacks in Industrial Internet of Things</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>With advanced 5G/6G networks, data-driven interconnected devices will increase exponentially. As a result, the Industrial Internet of Things (IIoT) requires data secure information extraction to apply digital services, medical diagnoses, and financial forecasting. This introduction of high-speed network mobile applications will also adapt. As a consequence, the scale and complexity of Android malware are rising. Detection of malware classification is vulnerable to attacks. A fabricated feature can force misclassification to produce the desired output. This article proposes a subset feature selection method to evade fabricated attacks in the IIoT environment. The method extracts application-aware features from a single android application to train an independent classification model. Ensemble-based learning is then used to train the distinct classification models. Finally, the collaborative ML classifier makes independent decisions to fight against adversarial evasion attacks. We compare and evaluate the benchmark Android malware dataset. The proposed method achieved 91% accuracy with 14 fabricated input features.</description><subject>Adversarial attacks</subject><subject>Analytical models</subject><subject>Android</subject><subject>Applications programs</subject><subject>Classification</subject><subject>Electronic devices</subject><subject>Feature extraction</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>Industrial Internet of Things (IIoT)</subject><subject>Information retrieval</subject><subject>Internet of Things</subject><subject>Malware</subject><subject>Mobile computing</subject><subject>Object recognition</subject><subject>Smart phones</subject><subject>Static analysis</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUxoMoOKd3wUvAc-dLk7bJcYyphQ0R5jkk6evMnO1MsoH_vR0bnt53-H3fgx8h9wwmjIF6WtX1JIc8n3AmFYjygoyYEiwDKOByyEXBMp4DvyY3MW4AeAVcjcj70ie_Nsl3a7o0W-98v4902hwwRBM8Rjo_mOj7jk5TMu4rUt_Rumv2MQVvtkNMGDpMtG_p6nNYibfkqjXbiHfnOyYfz_PV7DVbvL3Us-kic3nJU2aZk4jCtM5iZbF1ZWmNbViLvLLGSAHomgJVIRspjbXIcywFtoUAVqJSfEweT7u70P_sMSa96fehG17qvOKCywqYGCg4US70MQZs9S74bxN-NQN9FKcHcfooTp_FDZWHU8Uj4j-uJKtKIfkfRlVrbw</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Rafiq, Husnain</creator><creator>Aslam, Nauman</creator><creator>Ahmed, Usman</creator><creator>Lin, Jerry Chun-Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3933-4273</orcidid><orcidid>https://orcid.org/0000-0002-9500-3970</orcidid><orcidid>https://orcid.org/0000-0003-0920-0060</orcidid></search><sort><creationdate>202301</creationdate><title>Mitigating Malicious Adversaries Evasion Attacks in Industrial Internet of Things</title><author>Rafiq, Husnain ; Aslam, Nauman ; Ahmed, Usman ; Lin, Jerry Chun-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-b1c8ee4afcbe7befc66babd1fe37baa840ecd5e958d88abbe32e64ef54016e993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adversarial attacks</topic><topic>Analytical models</topic><topic>Android</topic><topic>Applications programs</topic><topic>Classification</topic><topic>Electronic devices</topic><topic>Feature extraction</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>Industrial Internet of Things (IIoT)</topic><topic>Information retrieval</topic><topic>Internet of Things</topic><topic>Malware</topic><topic>Mobile computing</topic><topic>Object recognition</topic><topic>Smart phones</topic><topic>Static analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Rafiq, Husnain</creatorcontrib><creatorcontrib>Aslam, Nauman</creatorcontrib><creatorcontrib>Ahmed, Usman</creatorcontrib><creatorcontrib>Lin, Jerry Chun-Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rafiq, Husnain</au><au>Aslam, Nauman</au><au>Ahmed, Usman</au><au>Lin, Jerry Chun-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitigating Malicious Adversaries Evasion Attacks in Industrial Internet of Things</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-01</date><risdate>2023</risdate><volume>19</volume><issue>1</issue><spage>960</spage><epage>968</epage><pages>960-968</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>With advanced 5G/6G networks, data-driven interconnected devices will increase exponentially. As a result, the Industrial Internet of Things (IIoT) requires data secure information extraction to apply digital services, medical diagnoses, and financial forecasting. This introduction of high-speed network mobile applications will also adapt. As a consequence, the scale and complexity of Android malware are rising. Detection of malware classification is vulnerable to attacks. A fabricated feature can force misclassification to produce the desired output. This article proposes a subset feature selection method to evade fabricated attacks in the IIoT environment. The method extracts application-aware features from a single android application to train an independent classification model. Ensemble-based learning is then used to train the distinct classification models. Finally, the collaborative ML classifier makes independent decisions to fight against adversarial evasion attacks. We compare and evaluate the benchmark Android malware dataset. The proposed method achieved 91% accuracy with 14 fabricated input features.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2022.3189046</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3933-4273</orcidid><orcidid>https://orcid.org/0000-0002-9500-3970</orcidid><orcidid>https://orcid.org/0000-0003-0920-0060</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2023-01, Vol.19 (1), p.960-968
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_9817648
source IEEE Electronic Library (IEL)
subjects Adversarial attacks
Analytical models
Android
Applications programs
Classification
Electronic devices
Feature extraction
Industrial applications
Industrial Internet of Things
Industrial Internet of Things (IIoT)
Information retrieval
Internet of Things
Malware
Mobile computing
Object recognition
Smart phones
Static analysis
title Mitigating Malicious Adversaries Evasion Attacks in Industrial Internet of Things
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitigating%20Malicious%20Adversaries%20Evasion%20Attacks%20in%20Industrial%20Internet%20of%20Things&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Rafiq,%20Husnain&rft.date=2023-01&rft.volume=19&rft.issue=1&rft.spage=960&rft.epage=968&rft.pages=960-968&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2022.3189046&rft_dat=%3Cproquest_RIE%3E2734387014%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734387014&rft_id=info:pmid/&rft_ieee_id=9817648&rfr_iscdi=true