Pleiad: An Open-Source Modeling Package for Optimizing Residential Flexibility in the Smart Grid Pleiad: Une Bibliothèque de Modélisation Libre Pour Optimiser la Flexibilité Résidentielle Dans Les Réseaux Électriques Intelligents
Demand response (DR) has been increasingly growing in significance among the solutions to tackle climate change, by supporting the development of intermittent renewable energy sources in the smart grid. Many models based on mathematical optimization have been developed to address the challenge of su...
Gespeichert in:
Veröffentlicht in: | Canadian journal of electrical and computer engineering 2022, p.1-8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Canadian journal of electrical and computer engineering |
container_volume | |
creator | de Lavoreille, Hugues Souchard Gomez-Herrera, Juan A. Anjos, Miguel F. |
description | Demand response (DR) has been increasingly growing in significance among the solutions to tackle climate change, by supporting the development of intermittent renewable energy sources in the smart grid. Many models based on mathematical optimization have been developed to address the challenge of supporting residential customers in providing flexibility services to the grid. However, comparing and applying those models is not always straightforward because of particular data handling or specific assumptions. In this work, we take advantage of the common aspects of DR models to build a metamodel, and hence an open source Python library that aims to unify the concepts and the data streaming in and out of the underlying mathematical optimization models. We demonstrate the effectiveness of the metamodel and of the Python library by using it to implement a task scheduler and to optimize the energy consumption for two dwellings. |
doi_str_mv | 10.1109/ICJECE.2022.3157662 |
format | Article |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_9817457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9817457</ieee_id><sourcerecordid>9817457</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-ed1b33a30a0f07cc536e97e87cf24b5db3b00c078b2182a6124b1c689159d5673</originalsourceid><addsrcrecordid>eNpNkFFOwkAQQBsTExU9AT9zgeJul3Zb_xQBMRgIyjfZtgOMrlvsLgl4A28i5-hxvIQVMfFrkpeXeZPxvCZnLc5Zcjno3Hc73VbAgqAleCijKDjyToMoaftcxuLEO7P2mTERs7B96n2NNZLKr-DawGiFxn8s1mWG8FDkqMksYKyyF7VAmBdlLTh6pfcfPEFLORpHSkNP44ZS0uS2QAbcEuHxVZUO-iXl8BeYGoQbSjUVbll9vq0R8n2m2mmyylFhYEhpiTCuLzikLJag1b9AtYNJtTukUWuEW2UsDNHuOar1BqoPjZkrqU5YGBhXa7SofXvuHc-VtnhxmA1v2us-de784ag_6FwPfeIsdD7mPBVCCabYnMksC0WEicRYZvOgnYZ5KlLGMibjNOBxoCJeU55FccLDJA8jKRpe83cvIeJsVVL9jO0siblsh1J8A2GIiYM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pleiad: An Open-Source Modeling Package for Optimizing Residential Flexibility in the Smart Grid Pleiad: Une Bibliothèque de Modélisation Libre Pour Optimiser la Flexibilité Résidentielle Dans Les Réseaux Électriques Intelligents</title><source>IEEE Electronic Library (IEL)</source><creator>de Lavoreille, Hugues Souchard ; Gomez-Herrera, Juan A. ; Anjos, Miguel F.</creator><creatorcontrib>de Lavoreille, Hugues Souchard ; Gomez-Herrera, Juan A. ; Anjos, Miguel F.</creatorcontrib><description>Demand response (DR) has been increasingly growing in significance among the solutions to tackle climate change, by supporting the development of intermittent renewable energy sources in the smart grid. Many models based on mathematical optimization have been developed to address the challenge of supporting residential customers in providing flexibility services to the grid. However, comparing and applying those models is not always straightforward because of particular data handling or specific assumptions. In this work, we take advantage of the common aspects of DR models to build a metamodel, and hence an open source Python library that aims to unify the concepts and the data streaming in and out of the underlying mathematical optimization models. We demonstrate the effectiveness of the metamodel and of the Python library by using it to implement a task scheduler and to optimize the energy consumption for two dwellings.</description><identifier>EISSN: 2694-1783</identifier><identifier>DOI: 10.1109/ICJECE.2022.3157662</identifier><identifier>CODEN: ICJEAP</identifier><language>eng</language><publisher>IEEE</publisher><subject>Climate change ; Costs ; Home appliances ; Load modeling ; Mathematical models ; Open source ; Open source software ; Optimization ; Renewable energy sources ; residential flexibility ; smart grid ; Smart grids</subject><ispartof>Canadian journal of electrical and computer engineering, 2022, p.1-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4072-7496 ; 0000-0002-8258-9116 ; 0000-0001-5149-8986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9817457$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9817457$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Lavoreille, Hugues Souchard</creatorcontrib><creatorcontrib>Gomez-Herrera, Juan A.</creatorcontrib><creatorcontrib>Anjos, Miguel F.</creatorcontrib><title>Pleiad: An Open-Source Modeling Package for Optimizing Residential Flexibility in the Smart Grid Pleiad: Une Bibliothèque de Modélisation Libre Pour Optimiser la Flexibilité Résidentielle Dans Les Réseaux Électriques Intelligents</title><title>Canadian journal of electrical and computer engineering</title><addtitle>ICJECE</addtitle><description>Demand response (DR) has been increasingly growing in significance among the solutions to tackle climate change, by supporting the development of intermittent renewable energy sources in the smart grid. Many models based on mathematical optimization have been developed to address the challenge of supporting residential customers in providing flexibility services to the grid. However, comparing and applying those models is not always straightforward because of particular data handling or specific assumptions. In this work, we take advantage of the common aspects of DR models to build a metamodel, and hence an open source Python library that aims to unify the concepts and the data streaming in and out of the underlying mathematical optimization models. We demonstrate the effectiveness of the metamodel and of the Python library by using it to implement a task scheduler and to optimize the energy consumption for two dwellings.</description><subject>Climate change</subject><subject>Costs</subject><subject>Home appliances</subject><subject>Load modeling</subject><subject>Mathematical models</subject><subject>Open source</subject><subject>Open source software</subject><subject>Optimization</subject><subject>Renewable energy sources</subject><subject>residential flexibility</subject><subject>smart grid</subject><subject>Smart grids</subject><issn>2694-1783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFOwkAQQBsTExU9AT9zgeJul3Zb_xQBMRgIyjfZtgOMrlvsLgl4A28i5-hxvIQVMfFrkpeXeZPxvCZnLc5Zcjno3Hc73VbAgqAleCijKDjyToMoaftcxuLEO7P2mTERs7B96n2NNZLKr-DawGiFxn8s1mWG8FDkqMksYKyyF7VAmBdlLTh6pfcfPEFLORpHSkNP44ZS0uS2QAbcEuHxVZUO-iXl8BeYGoQbSjUVbll9vq0R8n2m2mmyylFhYEhpiTCuLzikLJag1b9AtYNJtTukUWuEW2UsDNHuOar1BqoPjZkrqU5YGBhXa7SofXvuHc-VtnhxmA1v2us-de784ag_6FwPfeIsdD7mPBVCCabYnMksC0WEicRYZvOgnYZ5KlLGMibjNOBxoCJeU55FccLDJA8jKRpe83cvIeJsVVL9jO0siblsh1J8A2GIiYM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>de Lavoreille, Hugues Souchard</creator><creator>Gomez-Herrera, Juan A.</creator><creator>Anjos, Miguel F.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-4072-7496</orcidid><orcidid>https://orcid.org/0000-0002-8258-9116</orcidid><orcidid>https://orcid.org/0000-0001-5149-8986</orcidid></search><sort><creationdate>2022</creationdate><title>Pleiad: An Open-Source Modeling Package for Optimizing Residential Flexibility in the Smart Grid Pleiad: Une Bibliothèque de Modélisation Libre Pour Optimiser la Flexibilité Résidentielle Dans Les Réseaux Électriques Intelligents</title><author>de Lavoreille, Hugues Souchard ; Gomez-Herrera, Juan A. ; Anjos, Miguel F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-ed1b33a30a0f07cc536e97e87cf24b5db3b00c078b2182a6124b1c689159d5673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Climate change</topic><topic>Costs</topic><topic>Home appliances</topic><topic>Load modeling</topic><topic>Mathematical models</topic><topic>Open source</topic><topic>Open source software</topic><topic>Optimization</topic><topic>Renewable energy sources</topic><topic>residential flexibility</topic><topic>smart grid</topic><topic>Smart grids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Lavoreille, Hugues Souchard</creatorcontrib><creatorcontrib>Gomez-Herrera, Juan A.</creatorcontrib><creatorcontrib>Anjos, Miguel F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>Canadian journal of electrical and computer engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Lavoreille, Hugues Souchard</au><au>Gomez-Herrera, Juan A.</au><au>Anjos, Miguel F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pleiad: An Open-Source Modeling Package for Optimizing Residential Flexibility in the Smart Grid Pleiad: Une Bibliothèque de Modélisation Libre Pour Optimiser la Flexibilité Résidentielle Dans Les Réseaux Électriques Intelligents</atitle><jtitle>Canadian journal of electrical and computer engineering</jtitle><stitle>ICJECE</stitle><date>2022</date><risdate>2022</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>2694-1783</eissn><coden>ICJEAP</coden><abstract>Demand response (DR) has been increasingly growing in significance among the solutions to tackle climate change, by supporting the development of intermittent renewable energy sources in the smart grid. Many models based on mathematical optimization have been developed to address the challenge of supporting residential customers in providing flexibility services to the grid. However, comparing and applying those models is not always straightforward because of particular data handling or specific assumptions. In this work, we take advantage of the common aspects of DR models to build a metamodel, and hence an open source Python library that aims to unify the concepts and the data streaming in and out of the underlying mathematical optimization models. We demonstrate the effectiveness of the metamodel and of the Python library by using it to implement a task scheduler and to optimize the energy consumption for two dwellings.</abstract><pub>IEEE</pub><doi>10.1109/ICJECE.2022.3157662</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4072-7496</orcidid><orcidid>https://orcid.org/0000-0002-8258-9116</orcidid><orcidid>https://orcid.org/0000-0001-5149-8986</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2694-1783 |
ispartof | Canadian journal of electrical and computer engineering, 2022, p.1-8 |
issn | 2694-1783 |
language | eng |
recordid | cdi_ieee_primary_9817457 |
source | IEEE Electronic Library (IEL) |
subjects | Climate change Costs Home appliances Load modeling Mathematical models Open source Open source software Optimization Renewable energy sources residential flexibility smart grid Smart grids |
title | Pleiad: An Open-Source Modeling Package for Optimizing Residential Flexibility in the Smart Grid Pleiad: Une Bibliothèque de Modélisation Libre Pour Optimiser la Flexibilité Résidentielle Dans Les Réseaux Électriques Intelligents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pleiad:%20An%20Open-Source%20Modeling%20Package%20for%20Optimizing%20Residential%20Flexibility%20in%20the%20Smart%20Grid%20Pleiad:%20Une%20Biblioth%C3%A8que%20de%20Mod%C3%A9lisation%20Libre%20Pour%20Optimiser%20la%20Flexibilit%C3%A9%20R%C3%A9sidentielle%20Dans%20Les%20R%C3%A9seaux%20%C3%89lectriques%20Intelligents&rft.jtitle=Canadian%20journal%20of%20electrical%20and%20computer%20engineering&rft.au=de%20Lavoreille,%20Hugues%20Souchard&rft.date=2022&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=2694-1783&rft.coden=ICJEAP&rft_id=info:doi/10.1109/ICJECE.2022.3157662&rft_dat=%3Cieee_RIE%3E9817457%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9817457&rfr_iscdi=true |