Pleiad: An Open-Source Modeling Package for Optimizing Residential Flexibility in the Smart Grid Pleiad: Une Bibliothèque de Modélisation Libre Pour Optimiser la Flexibilité Résidentielle Dans Les Réseaux Électriques Intelligents

Demand response (DR) has been increasingly growing in significance among the solutions to tackle climate change, by supporting the development of intermittent renewable energy sources in the smart grid. Many models based on mathematical optimization have been developed to address the challenge of su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of electrical and computer engineering 2022, p.1-8
Hauptverfasser: de Lavoreille, Hugues Souchard, Gomez-Herrera, Juan A., Anjos, Miguel F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title Canadian journal of electrical and computer engineering
container_volume
creator de Lavoreille, Hugues Souchard
Gomez-Herrera, Juan A.
Anjos, Miguel F.
description Demand response (DR) has been increasingly growing in significance among the solutions to tackle climate change, by supporting the development of intermittent renewable energy sources in the smart grid. Many models based on mathematical optimization have been developed to address the challenge of supporting residential customers in providing flexibility services to the grid. However, comparing and applying those models is not always straightforward because of particular data handling or specific assumptions. In this work, we take advantage of the common aspects of DR models to build a metamodel, and hence an open source Python library that aims to unify the concepts and the data streaming in and out of the underlying mathematical optimization models. We demonstrate the effectiveness of the metamodel and of the Python library by using it to implement a task scheduler and to optimize the energy consumption for two dwellings.
doi_str_mv 10.1109/ICJECE.2022.3157662
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_9817457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9817457</ieee_id><sourcerecordid>9817457</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-ed1b33a30a0f07cc536e97e87cf24b5db3b00c078b2182a6124b1c689159d5673</originalsourceid><addsrcrecordid>eNpNkFFOwkAQQBsTExU9AT9zgeJul3Zb_xQBMRgIyjfZtgOMrlvsLgl4A28i5-hxvIQVMfFrkpeXeZPxvCZnLc5Zcjno3Hc73VbAgqAleCijKDjyToMoaftcxuLEO7P2mTERs7B96n2NNZLKr-DawGiFxn8s1mWG8FDkqMksYKyyF7VAmBdlLTh6pfcfPEFLORpHSkNP44ZS0uS2QAbcEuHxVZUO-iXl8BeYGoQbSjUVbll9vq0R8n2m2mmyylFhYEhpiTCuLzikLJag1b9AtYNJtTukUWuEW2UsDNHuOar1BqoPjZkrqU5YGBhXa7SofXvuHc-VtnhxmA1v2us-de784ag_6FwPfeIsdD7mPBVCCabYnMksC0WEicRYZvOgnYZ5KlLGMibjNOBxoCJeU55FccLDJA8jKRpe83cvIeJsVVL9jO0siblsh1J8A2GIiYM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pleiad: An Open-Source Modeling Package for Optimizing Residential Flexibility in the Smart Grid Pleiad: Une Bibliothèque de Modélisation Libre Pour Optimiser la Flexibilité Résidentielle Dans Les Réseaux Électriques Intelligents</title><source>IEEE Electronic Library (IEL)</source><creator>de Lavoreille, Hugues Souchard ; Gomez-Herrera, Juan A. ; Anjos, Miguel F.</creator><creatorcontrib>de Lavoreille, Hugues Souchard ; Gomez-Herrera, Juan A. ; Anjos, Miguel F.</creatorcontrib><description>Demand response (DR) has been increasingly growing in significance among the solutions to tackle climate change, by supporting the development of intermittent renewable energy sources in the smart grid. Many models based on mathematical optimization have been developed to address the challenge of supporting residential customers in providing flexibility services to the grid. However, comparing and applying those models is not always straightforward because of particular data handling or specific assumptions. In this work, we take advantage of the common aspects of DR models to build a metamodel, and hence an open source Python library that aims to unify the concepts and the data streaming in and out of the underlying mathematical optimization models. We demonstrate the effectiveness of the metamodel and of the Python library by using it to implement a task scheduler and to optimize the energy consumption for two dwellings.</description><identifier>EISSN: 2694-1783</identifier><identifier>DOI: 10.1109/ICJECE.2022.3157662</identifier><identifier>CODEN: ICJEAP</identifier><language>eng</language><publisher>IEEE</publisher><subject>Climate change ; Costs ; Home appliances ; Load modeling ; Mathematical models ; Open source ; Open source software ; Optimization ; Renewable energy sources ; residential flexibility ; smart grid ; Smart grids</subject><ispartof>Canadian journal of electrical and computer engineering, 2022, p.1-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4072-7496 ; 0000-0002-8258-9116 ; 0000-0001-5149-8986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9817457$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9817457$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Lavoreille, Hugues Souchard</creatorcontrib><creatorcontrib>Gomez-Herrera, Juan A.</creatorcontrib><creatorcontrib>Anjos, Miguel F.</creatorcontrib><title>Pleiad: An Open-Source Modeling Package for Optimizing Residential Flexibility in the Smart Grid Pleiad: Une Bibliothèque de Modélisation Libre Pour Optimiser la Flexibilité Résidentielle Dans Les Réseaux Électriques Intelligents</title><title>Canadian journal of electrical and computer engineering</title><addtitle>ICJECE</addtitle><description>Demand response (DR) has been increasingly growing in significance among the solutions to tackle climate change, by supporting the development of intermittent renewable energy sources in the smart grid. Many models based on mathematical optimization have been developed to address the challenge of supporting residential customers in providing flexibility services to the grid. However, comparing and applying those models is not always straightforward because of particular data handling or specific assumptions. In this work, we take advantage of the common aspects of DR models to build a metamodel, and hence an open source Python library that aims to unify the concepts and the data streaming in and out of the underlying mathematical optimization models. We demonstrate the effectiveness of the metamodel and of the Python library by using it to implement a task scheduler and to optimize the energy consumption for two dwellings.</description><subject>Climate change</subject><subject>Costs</subject><subject>Home appliances</subject><subject>Load modeling</subject><subject>Mathematical models</subject><subject>Open source</subject><subject>Open source software</subject><subject>Optimization</subject><subject>Renewable energy sources</subject><subject>residential flexibility</subject><subject>smart grid</subject><subject>Smart grids</subject><issn>2694-1783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFOwkAQQBsTExU9AT9zgeJul3Zb_xQBMRgIyjfZtgOMrlvsLgl4A28i5-hxvIQVMfFrkpeXeZPxvCZnLc5Zcjno3Hc73VbAgqAleCijKDjyToMoaftcxuLEO7P2mTERs7B96n2NNZLKr-DawGiFxn8s1mWG8FDkqMksYKyyF7VAmBdlLTh6pfcfPEFLORpHSkNP44ZS0uS2QAbcEuHxVZUO-iXl8BeYGoQbSjUVbll9vq0R8n2m2mmyylFhYEhpiTCuLzikLJag1b9AtYNJtTukUWuEW2UsDNHuOar1BqoPjZkrqU5YGBhXa7SofXvuHc-VtnhxmA1v2us-de784ag_6FwPfeIsdD7mPBVCCabYnMksC0WEicRYZvOgnYZ5KlLGMibjNOBxoCJeU55FccLDJA8jKRpe83cvIeJsVVL9jO0siblsh1J8A2GIiYM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>de Lavoreille, Hugues Souchard</creator><creator>Gomez-Herrera, Juan A.</creator><creator>Anjos, Miguel F.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-4072-7496</orcidid><orcidid>https://orcid.org/0000-0002-8258-9116</orcidid><orcidid>https://orcid.org/0000-0001-5149-8986</orcidid></search><sort><creationdate>2022</creationdate><title>Pleiad: An Open-Source Modeling Package for Optimizing Residential Flexibility in the Smart Grid Pleiad: Une Bibliothèque de Modélisation Libre Pour Optimiser la Flexibilité Résidentielle Dans Les Réseaux Électriques Intelligents</title><author>de Lavoreille, Hugues Souchard ; Gomez-Herrera, Juan A. ; Anjos, Miguel F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-ed1b33a30a0f07cc536e97e87cf24b5db3b00c078b2182a6124b1c689159d5673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Climate change</topic><topic>Costs</topic><topic>Home appliances</topic><topic>Load modeling</topic><topic>Mathematical models</topic><topic>Open source</topic><topic>Open source software</topic><topic>Optimization</topic><topic>Renewable energy sources</topic><topic>residential flexibility</topic><topic>smart grid</topic><topic>Smart grids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Lavoreille, Hugues Souchard</creatorcontrib><creatorcontrib>Gomez-Herrera, Juan A.</creatorcontrib><creatorcontrib>Anjos, Miguel F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>Canadian journal of electrical and computer engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Lavoreille, Hugues Souchard</au><au>Gomez-Herrera, Juan A.</au><au>Anjos, Miguel F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pleiad: An Open-Source Modeling Package for Optimizing Residential Flexibility in the Smart Grid Pleiad: Une Bibliothèque de Modélisation Libre Pour Optimiser la Flexibilité Résidentielle Dans Les Réseaux Électriques Intelligents</atitle><jtitle>Canadian journal of electrical and computer engineering</jtitle><stitle>ICJECE</stitle><date>2022</date><risdate>2022</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>2694-1783</eissn><coden>ICJEAP</coden><abstract>Demand response (DR) has been increasingly growing in significance among the solutions to tackle climate change, by supporting the development of intermittent renewable energy sources in the smart grid. Many models based on mathematical optimization have been developed to address the challenge of supporting residential customers in providing flexibility services to the grid. However, comparing and applying those models is not always straightforward because of particular data handling or specific assumptions. In this work, we take advantage of the common aspects of DR models to build a metamodel, and hence an open source Python library that aims to unify the concepts and the data streaming in and out of the underlying mathematical optimization models. We demonstrate the effectiveness of the metamodel and of the Python library by using it to implement a task scheduler and to optimize the energy consumption for two dwellings.</abstract><pub>IEEE</pub><doi>10.1109/ICJECE.2022.3157662</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4072-7496</orcidid><orcidid>https://orcid.org/0000-0002-8258-9116</orcidid><orcidid>https://orcid.org/0000-0001-5149-8986</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2694-1783
ispartof Canadian journal of electrical and computer engineering, 2022, p.1-8
issn 2694-1783
language eng
recordid cdi_ieee_primary_9817457
source IEEE Electronic Library (IEL)
subjects Climate change
Costs
Home appliances
Load modeling
Mathematical models
Open source
Open source software
Optimization
Renewable energy sources
residential flexibility
smart grid
Smart grids
title Pleiad: An Open-Source Modeling Package for Optimizing Residential Flexibility in the Smart Grid Pleiad: Une Bibliothèque de Modélisation Libre Pour Optimiser la Flexibilité Résidentielle Dans Les Réseaux Électriques Intelligents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pleiad:%20An%20Open-Source%20Modeling%20Package%20for%20Optimizing%20Residential%20Flexibility%20in%20the%20Smart%20Grid%20Pleiad:%20Une%20Biblioth%C3%A8que%20de%20Mod%C3%A9lisation%20Libre%20Pour%20Optimiser%20la%20Flexibilit%C3%A9%20R%C3%A9sidentielle%20Dans%20Les%20R%C3%A9seaux%20%C3%89lectriques%20Intelligents&rft.jtitle=Canadian%20journal%20of%20electrical%20and%20computer%20engineering&rft.au=de%20Lavoreille,%20Hugues%20Souchard&rft.date=2022&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=2694-1783&rft.coden=ICJEAP&rft_id=info:doi/10.1109/ICJECE.2022.3157662&rft_dat=%3Cieee_RIE%3E9817457%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9817457&rfr_iscdi=true