A Standalone Energy Management System of Battery/Supercapacitor Hybrid Energy Storage System for Electric Vehicles Using Model Predictive Control
In this article, a standalone model predictive control (MPC) based energy management strategy (EMS) is proposed for the hybrid energy storage system in electric vehicles. The proposed EMS does not require any knowledge of vehicle speed or future demands, so it can be implemented as a standalone syst...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2023-05, Vol.70 (5), p.5104-5114 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5114 |
---|---|
container_issue | 5 |
container_start_page | 5104 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 70 |
creator | Nguyen, Ngoc-Duc Yoon, Changwoo Lee, Young Il |
description | In this article, a standalone model predictive control (MPC) based energy management strategy (EMS) is proposed for the hybrid energy storage system in electric vehicles. The proposed EMS does not require any knowledge of vehicle speed or future demands, so it can be implemented as a standalone system without interfacing with the motor drive system. Furthermore, only one tuning parameter is used to adjust the performance of the proposed MPC-based EMS. The cost function is made of the deviation of the predicted supercapacitor (SC) voltage from its desired value and the difference between the battery current and its steady-state value. Furthermore, the constraints on the battery current rate and the SC voltage will be enforced when solving the optimization problem of EMS. Based on the finite set of battery current references, the online optimal solution can be implemented in the experiment. Then, the fast convergent current control is designed to track the optimal current reference using a continuous control set MPC. To show the effectiveness of the proposed method, the comparison with the rule-based EMS will be presented in simulation and experiments. |
doi_str_mv | 10.1109/TIE.2022.3186369 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9813467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9813467</ieee_id><sourcerecordid>2760653122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1e02b4fe9c5c2c94fea45ca6d7b290e6027519d906eae1ac866ed5b84fae9acf3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouH7cBS8Bz91N0iZtjuuyfsAuClWvJU2na6Tb1CQr9Gf4j42s62mG4X1mmAehK0qmlBI5e3lcThlhbJrSQqRCHqEJ5TxPpMyKYzQhLC8SQjJxis68_yCEZpzyCfqe4zKovlGd7QEve3CbEa9VrzawhT7gcvQBtti2-FaFAG6clbsBnFaD0iZYhx_G2pnmQJZxFNED1sbAsgMdnNH4Dd6N7sDjV2_6DV7bBjr87KAxOpgvwAvbB2e7C3TSqs7D5V89R693y5fFQ7J6un9czFeJZpKGhAJhddaC1FwzLWOnMq6VaPKaSQIiPsypbCQRoIAqXQgBDa-LrFUglW7Tc3Sz3zs4-7kDH6oPu3N9PFmxXBDBU8pYTJF9SjvrvYO2GpzZKjdWlFS_4qsovvoVX_2Jj8j1HjEA8B-XBU0zkac_nvmCEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760653122</pqid></control><display><type>article</type><title>A Standalone Energy Management System of Battery/Supercapacitor Hybrid Energy Storage System for Electric Vehicles Using Model Predictive Control</title><source>IEEE Electronic Library (IEL)</source><creator>Nguyen, Ngoc-Duc ; Yoon, Changwoo ; Lee, Young Il</creator><creatorcontrib>Nguyen, Ngoc-Duc ; Yoon, Changwoo ; Lee, Young Il</creatorcontrib><description>In this article, a standalone model predictive control (MPC) based energy management strategy (EMS) is proposed for the hybrid energy storage system in electric vehicles. The proposed EMS does not require any knowledge of vehicle speed or future demands, so it can be implemented as a standalone system without interfacing with the motor drive system. Furthermore, only one tuning parameter is used to adjust the performance of the proposed MPC-based EMS. The cost function is made of the deviation of the predicted supercapacitor (SC) voltage from its desired value and the difference between the battery current and its steady-state value. Furthermore, the constraints on the battery current rate and the SC voltage will be enforced when solving the optimization problem of EMS. Based on the finite set of battery current references, the online optimal solution can be implemented in the experiment. Then, the fast convergent current control is designed to track the optimal current reference using a continuous control set MPC. To show the effectiveness of the proposed method, the comparison with the rule-based EMS will be presented in simulation and experiments.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2022.3186369</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Batteries ; Battery ; Cost function ; Current control ; DC-DC power converters ; Electric potential ; Electric vehicles ; electric vehicles (EVs) ; Energy management ; energy management strategy (EMS) ; Energy storage ; hybrid energy storage system (HESS) ; Hybrid systems ; model predictive control (MPC) ; Optimization ; Predictive control ; supercapacitor (SC) ; Supercapacitors ; Traction motors ; Traffic speed ; Tuning ; Voltage ; Voltage control</subject><ispartof>IEEE transactions on industrial electronics (1982), 2023-05, Vol.70 (5), p.5104-5114</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1e02b4fe9c5c2c94fea45ca6d7b290e6027519d906eae1ac866ed5b84fae9acf3</citedby><cites>FETCH-LOGICAL-c291t-1e02b4fe9c5c2c94fea45ca6d7b290e6027519d906eae1ac866ed5b84fae9acf3</cites><orcidid>0000-0002-9650-8479 ; 0000-0003-3970-215X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9813467$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9813467$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nguyen, Ngoc-Duc</creatorcontrib><creatorcontrib>Yoon, Changwoo</creatorcontrib><creatorcontrib>Lee, Young Il</creatorcontrib><title>A Standalone Energy Management System of Battery/Supercapacitor Hybrid Energy Storage System for Electric Vehicles Using Model Predictive Control</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>In this article, a standalone model predictive control (MPC) based energy management strategy (EMS) is proposed for the hybrid energy storage system in electric vehicles. The proposed EMS does not require any knowledge of vehicle speed or future demands, so it can be implemented as a standalone system without interfacing with the motor drive system. Furthermore, only one tuning parameter is used to adjust the performance of the proposed MPC-based EMS. The cost function is made of the deviation of the predicted supercapacitor (SC) voltage from its desired value and the difference between the battery current and its steady-state value. Furthermore, the constraints on the battery current rate and the SC voltage will be enforced when solving the optimization problem of EMS. Based on the finite set of battery current references, the online optimal solution can be implemented in the experiment. Then, the fast convergent current control is designed to track the optimal current reference using a continuous control set MPC. To show the effectiveness of the proposed method, the comparison with the rule-based EMS will be presented in simulation and experiments.</description><subject>Batteries</subject><subject>Battery</subject><subject>Cost function</subject><subject>Current control</subject><subject>DC-DC power converters</subject><subject>Electric potential</subject><subject>Electric vehicles</subject><subject>electric vehicles (EVs)</subject><subject>Energy management</subject><subject>energy management strategy (EMS)</subject><subject>Energy storage</subject><subject>hybrid energy storage system (HESS)</subject><subject>Hybrid systems</subject><subject>model predictive control (MPC)</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>supercapacitor (SC)</subject><subject>Supercapacitors</subject><subject>Traction motors</subject><subject>Traffic speed</subject><subject>Tuning</subject><subject>Voltage</subject><subject>Voltage control</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LxDAQhoMouH7cBS8Bz91N0iZtjuuyfsAuClWvJU2na6Tb1CQr9Gf4j42s62mG4X1mmAehK0qmlBI5e3lcThlhbJrSQqRCHqEJ5TxPpMyKYzQhLC8SQjJxis68_yCEZpzyCfqe4zKovlGd7QEve3CbEa9VrzawhT7gcvQBtti2-FaFAG6clbsBnFaD0iZYhx_G2pnmQJZxFNED1sbAsgMdnNH4Dd6N7sDjV2_6DV7bBjr87KAxOpgvwAvbB2e7C3TSqs7D5V89R693y5fFQ7J6un9czFeJZpKGhAJhddaC1FwzLWOnMq6VaPKaSQIiPsypbCQRoIAqXQgBDa-LrFUglW7Tc3Sz3zs4-7kDH6oPu3N9PFmxXBDBU8pYTJF9SjvrvYO2GpzZKjdWlFS_4qsovvoVX_2Jj8j1HjEA8B-XBU0zkac_nvmCEA</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Nguyen, Ngoc-Duc</creator><creator>Yoon, Changwoo</creator><creator>Lee, Young Il</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9650-8479</orcidid><orcidid>https://orcid.org/0000-0003-3970-215X</orcidid></search><sort><creationdate>20230501</creationdate><title>A Standalone Energy Management System of Battery/Supercapacitor Hybrid Energy Storage System for Electric Vehicles Using Model Predictive Control</title><author>Nguyen, Ngoc-Duc ; Yoon, Changwoo ; Lee, Young Il</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1e02b4fe9c5c2c94fea45ca6d7b290e6027519d906eae1ac866ed5b84fae9acf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Batteries</topic><topic>Battery</topic><topic>Cost function</topic><topic>Current control</topic><topic>DC-DC power converters</topic><topic>Electric potential</topic><topic>Electric vehicles</topic><topic>electric vehicles (EVs)</topic><topic>Energy management</topic><topic>energy management strategy (EMS)</topic><topic>Energy storage</topic><topic>hybrid energy storage system (HESS)</topic><topic>Hybrid systems</topic><topic>model predictive control (MPC)</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>supercapacitor (SC)</topic><topic>Supercapacitors</topic><topic>Traction motors</topic><topic>Traffic speed</topic><topic>Tuning</topic><topic>Voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Ngoc-Duc</creatorcontrib><creatorcontrib>Yoon, Changwoo</creatorcontrib><creatorcontrib>Lee, Young Il</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nguyen, Ngoc-Duc</au><au>Yoon, Changwoo</au><au>Lee, Young Il</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Standalone Energy Management System of Battery/Supercapacitor Hybrid Energy Storage System for Electric Vehicles Using Model Predictive Control</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>70</volume><issue>5</issue><spage>5104</spage><epage>5114</epage><pages>5104-5114</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>In this article, a standalone model predictive control (MPC) based energy management strategy (EMS) is proposed for the hybrid energy storage system in electric vehicles. The proposed EMS does not require any knowledge of vehicle speed or future demands, so it can be implemented as a standalone system without interfacing with the motor drive system. Furthermore, only one tuning parameter is used to adjust the performance of the proposed MPC-based EMS. The cost function is made of the deviation of the predicted supercapacitor (SC) voltage from its desired value and the difference between the battery current and its steady-state value. Furthermore, the constraints on the battery current rate and the SC voltage will be enforced when solving the optimization problem of EMS. Based on the finite set of battery current references, the online optimal solution can be implemented in the experiment. Then, the fast convergent current control is designed to track the optimal current reference using a continuous control set MPC. To show the effectiveness of the proposed method, the comparison with the rule-based EMS will be presented in simulation and experiments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2022.3186369</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9650-8479</orcidid><orcidid>https://orcid.org/0000-0003-3970-215X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2023-05, Vol.70 (5), p.5104-5114 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_ieee_primary_9813467 |
source | IEEE Electronic Library (IEL) |
subjects | Batteries Battery Cost function Current control DC-DC power converters Electric potential Electric vehicles electric vehicles (EVs) Energy management energy management strategy (EMS) Energy storage hybrid energy storage system (HESS) Hybrid systems model predictive control (MPC) Optimization Predictive control supercapacitor (SC) Supercapacitors Traction motors Traffic speed Tuning Voltage Voltage control |
title | A Standalone Energy Management System of Battery/Supercapacitor Hybrid Energy Storage System for Electric Vehicles Using Model Predictive Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Standalone%20Energy%20Management%20System%20of%20Battery/Supercapacitor%20Hybrid%20Energy%20Storage%20System%20for%20Electric%20Vehicles%20Using%20Model%20Predictive%20Control&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Nguyen,%20Ngoc-Duc&rft.date=2023-05-01&rft.volume=70&rft.issue=5&rft.spage=5104&rft.epage=5114&rft.pages=5104-5114&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2022.3186369&rft_dat=%3Cproquest_RIE%3E2760653122%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760653122&rft_id=info:pmid/&rft_ieee_id=9813467&rfr_iscdi=true |