Remote Drowsiness Detection Based on the mmWave FMCW Radar

Drowsiness can lead to inefficiency and major disasters; thus it is important to address it in both academia and industry. Despite multiple types of research in this field, a nonintrusive classifier system for detecting drowsiness in real-time under a natural environment without specific stimulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2022-08, Vol.22 (15), p.15222-15234
Hauptverfasser: Liu, Sannyuya, Zhao, Liang, Yang, Xidong, Du, Yiming, Li, Menglin, Zhu, Xiaoliang, Dai, Zhicheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15234
container_issue 15
container_start_page 15222
container_title IEEE sensors journal
container_volume 22
creator Liu, Sannyuya
Zhao, Liang
Yang, Xidong
Du, Yiming
Li, Menglin
Zhu, Xiaoliang
Dai, Zhicheng
description Drowsiness can lead to inefficiency and major disasters; thus it is important to address it in both academia and industry. Despite multiple types of research in this field, a nonintrusive classifier system for detecting drowsiness in real-time under a natural environment without specific stimulation is lacking. This study develops a real-time drowsiness detection system using a 77 GHz millimeter-wave (mmWave) frequency-modulated continuous wave radar. Specifically, firstly, a real-time mmWave processing module is proposed, which can adaptively suppress both stationary and non-stationary clutters. Secondly, a feature extraction module based on a hybrid of handcrafted and machine learning (ML) features is propsoed to obtain a holistic view of mmWave-based vital signals, in which ML features represent linear and temporal changes. Thirdly, a drowsiness classification model is proposed based on feature fusion and extreme gradient boosting algorithms, thus classifying a user's state into two categories: non-drowsy and drowsy. To confirm the proposed system's performance, it is validated on a self-collected dataset (n = 28). The experimental results show the following (i) the accuracy of heart rate evaluation is 96.4%, and (ii) based on 10-fold cross-validation, the proposed system gains a detection accuracy of 82.9% and outperforms the state-of-the-art approaches.
doi_str_mv 10.1109/JSEN.2022.3186486
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9813466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9813466</ieee_id><sourcerecordid>2697563327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c2fa91fe7aa6dc5b2452c3f286deeffb0d6ad9349475fbf9e6da13ffec98a30a3</originalsourceid><addsrcrecordid>eNo9kElPwzAQhS0EEqXwAxAXS5xTvMULN-jCogJSAZWb5cZjkYo0rZ2C-PckasVl5h3em9H7EDqnZEApMVePr-PnASOMDTjVUmh5gHo0z3VGldCHneYkE1x9HKOTlJaEUKNy1UPXM6jqBvAo1j-pXEFKeAQNFE1Zr_CtS-BxK5pPwFU1d9-AJ0_DOZ457-IpOgruK8HZfvfR-2T8NrzPpi93D8ObaVYww5t2BmdoAOWc9EW-YCJnBQ9MSw8QwoJ46bzhwgiVh0UwIL2jPAQojHacON5Hl7u761hvtpAau6y3cdW-tEy2LSTnTLUuunMVsU4pQrDrWFYu_lpKbIfIdohsh8juEbWZi12mBIB_v9GUCyn5Hw3tYjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697563327</pqid></control><display><type>article</type><title>Remote Drowsiness Detection Based on the mmWave FMCW Radar</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Sannyuya ; Zhao, Liang ; Yang, Xidong ; Du, Yiming ; Li, Menglin ; Zhu, Xiaoliang ; Dai, Zhicheng</creator><creatorcontrib>Liu, Sannyuya ; Zhao, Liang ; Yang, Xidong ; Du, Yiming ; Li, Menglin ; Zhu, Xiaoliang ; Dai, Zhicheng</creatorcontrib><description>Drowsiness can lead to inefficiency and major disasters; thus it is important to address it in both academia and industry. Despite multiple types of research in this field, a nonintrusive classifier system for detecting drowsiness in real-time under a natural environment without specific stimulation is lacking. This study develops a real-time drowsiness detection system using a 77 GHz millimeter-wave (mmWave) frequency-modulated continuous wave radar. Specifically, firstly, a real-time mmWave processing module is proposed, which can adaptively suppress both stationary and non-stationary clutters. Secondly, a feature extraction module based on a hybrid of handcrafted and machine learning (ML) features is propsoed to obtain a holistic view of mmWave-based vital signals, in which ML features represent linear and temporal changes. Thirdly, a drowsiness classification model is proposed based on feature fusion and extreme gradient boosting algorithms, thus classifying a user's state into two categories: non-drowsy and drowsy. To confirm the proposed system's performance, it is validated on a self-collected dataset (n = 28). The experimental results show the following (i) the accuracy of heart rate evaluation is 96.4%, and (ii) based on 10-fold cross-validation, the proposed system gains a detection accuracy of 82.9% and outperforms the state-of-the-art approaches.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3186486</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Biomedical monitoring ; Chirp ; Classification ; Clutter ; Continuous wave radar ; Data fusion ; deep learning ; drowsiness detection ; Feature extraction ; Heart beat ; Heart rate ; Machine learning ; millimeter wave radar sensor ; Millimeter waves ; Modules ; physiology ; Radar ; Radar detection ; radar remote sensing ; Real time ; Sleepiness</subject><ispartof>IEEE sensors journal, 2022-08, Vol.22 (15), p.15222-15234</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c2fa91fe7aa6dc5b2452c3f286deeffb0d6ad9349475fbf9e6da13ffec98a30a3</citedby><cites>FETCH-LOGICAL-c293t-c2fa91fe7aa6dc5b2452c3f286deeffb0d6ad9349475fbf9e6da13ffec98a30a3</cites><orcidid>0000-0003-0678-489X ; 0000-0001-7622-4746 ; 0000-0002-4926-3720 ; 0000-0002-3558-9690 ; 0000-0001-6613-2207 ; 0000-0002-0903-4579 ; 0000-0002-8493-1931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9813466$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9813466$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Sannyuya</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Yang, Xidong</creatorcontrib><creatorcontrib>Du, Yiming</creatorcontrib><creatorcontrib>Li, Menglin</creatorcontrib><creatorcontrib>Zhu, Xiaoliang</creatorcontrib><creatorcontrib>Dai, Zhicheng</creatorcontrib><title>Remote Drowsiness Detection Based on the mmWave FMCW Radar</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Drowsiness can lead to inefficiency and major disasters; thus it is important to address it in both academia and industry. Despite multiple types of research in this field, a nonintrusive classifier system for detecting drowsiness in real-time under a natural environment without specific stimulation is lacking. This study develops a real-time drowsiness detection system using a 77 GHz millimeter-wave (mmWave) frequency-modulated continuous wave radar. Specifically, firstly, a real-time mmWave processing module is proposed, which can adaptively suppress both stationary and non-stationary clutters. Secondly, a feature extraction module based on a hybrid of handcrafted and machine learning (ML) features is propsoed to obtain a holistic view of mmWave-based vital signals, in which ML features represent linear and temporal changes. Thirdly, a drowsiness classification model is proposed based on feature fusion and extreme gradient boosting algorithms, thus classifying a user's state into two categories: non-drowsy and drowsy. To confirm the proposed system's performance, it is validated on a self-collected dataset (n = 28). The experimental results show the following (i) the accuracy of heart rate evaluation is 96.4%, and (ii) based on 10-fold cross-validation, the proposed system gains a detection accuracy of 82.9% and outperforms the state-of-the-art approaches.</description><subject>Algorithms</subject><subject>Biomedical monitoring</subject><subject>Chirp</subject><subject>Classification</subject><subject>Clutter</subject><subject>Continuous wave radar</subject><subject>Data fusion</subject><subject>deep learning</subject><subject>drowsiness detection</subject><subject>Feature extraction</subject><subject>Heart beat</subject><subject>Heart rate</subject><subject>Machine learning</subject><subject>millimeter wave radar sensor</subject><subject>Millimeter waves</subject><subject>Modules</subject><subject>physiology</subject><subject>Radar</subject><subject>Radar detection</subject><subject>radar remote sensing</subject><subject>Real time</subject><subject>Sleepiness</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kElPwzAQhS0EEqXwAxAXS5xTvMULN-jCogJSAZWb5cZjkYo0rZ2C-PckasVl5h3em9H7EDqnZEApMVePr-PnASOMDTjVUmh5gHo0z3VGldCHneYkE1x9HKOTlJaEUKNy1UPXM6jqBvAo1j-pXEFKeAQNFE1Zr_CtS-BxK5pPwFU1d9-AJ0_DOZ457-IpOgruK8HZfvfR-2T8NrzPpi93D8ObaVYww5t2BmdoAOWc9EW-YCJnBQ9MSw8QwoJ46bzhwgiVh0UwIL2jPAQojHacON5Hl7u761hvtpAau6y3cdW-tEy2LSTnTLUuunMVsU4pQrDrWFYu_lpKbIfIdohsh8juEbWZi12mBIB_v9GUCyn5Hw3tYjY</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Liu, Sannyuya</creator><creator>Zhao, Liang</creator><creator>Yang, Xidong</creator><creator>Du, Yiming</creator><creator>Li, Menglin</creator><creator>Zhu, Xiaoliang</creator><creator>Dai, Zhicheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0678-489X</orcidid><orcidid>https://orcid.org/0000-0001-7622-4746</orcidid><orcidid>https://orcid.org/0000-0002-4926-3720</orcidid><orcidid>https://orcid.org/0000-0002-3558-9690</orcidid><orcidid>https://orcid.org/0000-0001-6613-2207</orcidid><orcidid>https://orcid.org/0000-0002-0903-4579</orcidid><orcidid>https://orcid.org/0000-0002-8493-1931</orcidid></search><sort><creationdate>20220801</creationdate><title>Remote Drowsiness Detection Based on the mmWave FMCW Radar</title><author>Liu, Sannyuya ; Zhao, Liang ; Yang, Xidong ; Du, Yiming ; Li, Menglin ; Zhu, Xiaoliang ; Dai, Zhicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c2fa91fe7aa6dc5b2452c3f286deeffb0d6ad9349475fbf9e6da13ffec98a30a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biomedical monitoring</topic><topic>Chirp</topic><topic>Classification</topic><topic>Clutter</topic><topic>Continuous wave radar</topic><topic>Data fusion</topic><topic>deep learning</topic><topic>drowsiness detection</topic><topic>Feature extraction</topic><topic>Heart beat</topic><topic>Heart rate</topic><topic>Machine learning</topic><topic>millimeter wave radar sensor</topic><topic>Millimeter waves</topic><topic>Modules</topic><topic>physiology</topic><topic>Radar</topic><topic>Radar detection</topic><topic>radar remote sensing</topic><topic>Real time</topic><topic>Sleepiness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Sannyuya</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Yang, Xidong</creatorcontrib><creatorcontrib>Du, Yiming</creatorcontrib><creatorcontrib>Li, Menglin</creatorcontrib><creatorcontrib>Zhu, Xiaoliang</creatorcontrib><creatorcontrib>Dai, Zhicheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Sannyuya</au><au>Zhao, Liang</au><au>Yang, Xidong</au><au>Du, Yiming</au><au>Li, Menglin</au><au>Zhu, Xiaoliang</au><au>Dai, Zhicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote Drowsiness Detection Based on the mmWave FMCW Radar</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>22</volume><issue>15</issue><spage>15222</spage><epage>15234</epage><pages>15222-15234</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Drowsiness can lead to inefficiency and major disasters; thus it is important to address it in both academia and industry. Despite multiple types of research in this field, a nonintrusive classifier system for detecting drowsiness in real-time under a natural environment without specific stimulation is lacking. This study develops a real-time drowsiness detection system using a 77 GHz millimeter-wave (mmWave) frequency-modulated continuous wave radar. Specifically, firstly, a real-time mmWave processing module is proposed, which can adaptively suppress both stationary and non-stationary clutters. Secondly, a feature extraction module based on a hybrid of handcrafted and machine learning (ML) features is propsoed to obtain a holistic view of mmWave-based vital signals, in which ML features represent linear and temporal changes. Thirdly, a drowsiness classification model is proposed based on feature fusion and extreme gradient boosting algorithms, thus classifying a user's state into two categories: non-drowsy and drowsy. To confirm the proposed system's performance, it is validated on a self-collected dataset (n = 28). The experimental results show the following (i) the accuracy of heart rate evaluation is 96.4%, and (ii) based on 10-fold cross-validation, the proposed system gains a detection accuracy of 82.9% and outperforms the state-of-the-art approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3186486</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0678-489X</orcidid><orcidid>https://orcid.org/0000-0001-7622-4746</orcidid><orcidid>https://orcid.org/0000-0002-4926-3720</orcidid><orcidid>https://orcid.org/0000-0002-3558-9690</orcidid><orcidid>https://orcid.org/0000-0001-6613-2207</orcidid><orcidid>https://orcid.org/0000-0002-0903-4579</orcidid><orcidid>https://orcid.org/0000-0002-8493-1931</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-08, Vol.22 (15), p.15222-15234
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9813466
source IEEE Electronic Library (IEL)
subjects Algorithms
Biomedical monitoring
Chirp
Classification
Clutter
Continuous wave radar
Data fusion
deep learning
drowsiness detection
Feature extraction
Heart beat
Heart rate
Machine learning
millimeter wave radar sensor
Millimeter waves
Modules
physiology
Radar
Radar detection
radar remote sensing
Real time
Sleepiness
title Remote Drowsiness Detection Based on the mmWave FMCW Radar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20Drowsiness%20Detection%20Based%20on%20the%20mmWave%20FMCW%20Radar&rft.jtitle=IEEE%20sensors%20journal&rft.au=Liu,%20Sannyuya&rft.date=2022-08-01&rft.volume=22&rft.issue=15&rft.spage=15222&rft.epage=15234&rft.pages=15222-15234&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3186486&rft_dat=%3Cproquest_RIE%3E2697563327%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697563327&rft_id=info:pmid/&rft_ieee_id=9813466&rfr_iscdi=true