Remote Drowsiness Detection Based on the mmWave FMCW Radar
Drowsiness can lead to inefficiency and major disasters; thus it is important to address it in both academia and industry. Despite multiple types of research in this field, a nonintrusive classifier system for detecting drowsiness in real-time under a natural environment without specific stimulation...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2022-08, Vol.22 (15), p.15222-15234 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15234 |
---|---|
container_issue | 15 |
container_start_page | 15222 |
container_title | IEEE sensors journal |
container_volume | 22 |
creator | Liu, Sannyuya Zhao, Liang Yang, Xidong Du, Yiming Li, Menglin Zhu, Xiaoliang Dai, Zhicheng |
description | Drowsiness can lead to inefficiency and major disasters; thus it is important to address it in both academia and industry. Despite multiple types of research in this field, a nonintrusive classifier system for detecting drowsiness in real-time under a natural environment without specific stimulation is lacking. This study develops a real-time drowsiness detection system using a 77 GHz millimeter-wave (mmWave) frequency-modulated continuous wave radar. Specifically, firstly, a real-time mmWave processing module is proposed, which can adaptively suppress both stationary and non-stationary clutters. Secondly, a feature extraction module based on a hybrid of handcrafted and machine learning (ML) features is propsoed to obtain a holistic view of mmWave-based vital signals, in which ML features represent linear and temporal changes. Thirdly, a drowsiness classification model is proposed based on feature fusion and extreme gradient boosting algorithms, thus classifying a user's state into two categories: non-drowsy and drowsy. To confirm the proposed system's performance, it is validated on a self-collected dataset (n = 28). The experimental results show the following (i) the accuracy of heart rate evaluation is 96.4%, and (ii) based on 10-fold cross-validation, the proposed system gains a detection accuracy of 82.9% and outperforms the state-of-the-art approaches. |
doi_str_mv | 10.1109/JSEN.2022.3186486 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9813466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9813466</ieee_id><sourcerecordid>2697563327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c2fa91fe7aa6dc5b2452c3f286deeffb0d6ad9349475fbf9e6da13ffec98a30a3</originalsourceid><addsrcrecordid>eNo9kElPwzAQhS0EEqXwAxAXS5xTvMULN-jCogJSAZWb5cZjkYo0rZ2C-PckasVl5h3em9H7EDqnZEApMVePr-PnASOMDTjVUmh5gHo0z3VGldCHneYkE1x9HKOTlJaEUKNy1UPXM6jqBvAo1j-pXEFKeAQNFE1Zr_CtS-BxK5pPwFU1d9-AJ0_DOZ457-IpOgruK8HZfvfR-2T8NrzPpi93D8ObaVYww5t2BmdoAOWc9EW-YCJnBQ9MSw8QwoJ46bzhwgiVh0UwIL2jPAQojHacON5Hl7u761hvtpAau6y3cdW-tEy2LSTnTLUuunMVsU4pQrDrWFYu_lpKbIfIdohsh8juEbWZi12mBIB_v9GUCyn5Hw3tYjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697563327</pqid></control><display><type>article</type><title>Remote Drowsiness Detection Based on the mmWave FMCW Radar</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Sannyuya ; Zhao, Liang ; Yang, Xidong ; Du, Yiming ; Li, Menglin ; Zhu, Xiaoliang ; Dai, Zhicheng</creator><creatorcontrib>Liu, Sannyuya ; Zhao, Liang ; Yang, Xidong ; Du, Yiming ; Li, Menglin ; Zhu, Xiaoliang ; Dai, Zhicheng</creatorcontrib><description>Drowsiness can lead to inefficiency and major disasters; thus it is important to address it in both academia and industry. Despite multiple types of research in this field, a nonintrusive classifier system for detecting drowsiness in real-time under a natural environment without specific stimulation is lacking. This study develops a real-time drowsiness detection system using a 77 GHz millimeter-wave (mmWave) frequency-modulated continuous wave radar. Specifically, firstly, a real-time mmWave processing module is proposed, which can adaptively suppress both stationary and non-stationary clutters. Secondly, a feature extraction module based on a hybrid of handcrafted and machine learning (ML) features is propsoed to obtain a holistic view of mmWave-based vital signals, in which ML features represent linear and temporal changes. Thirdly, a drowsiness classification model is proposed based on feature fusion and extreme gradient boosting algorithms, thus classifying a user's state into two categories: non-drowsy and drowsy. To confirm the proposed system's performance, it is validated on a self-collected dataset (n = 28). The experimental results show the following (i) the accuracy of heart rate evaluation is 96.4%, and (ii) based on 10-fold cross-validation, the proposed system gains a detection accuracy of 82.9% and outperforms the state-of-the-art approaches.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3186486</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Biomedical monitoring ; Chirp ; Classification ; Clutter ; Continuous wave radar ; Data fusion ; deep learning ; drowsiness detection ; Feature extraction ; Heart beat ; Heart rate ; Machine learning ; millimeter wave radar sensor ; Millimeter waves ; Modules ; physiology ; Radar ; Radar detection ; radar remote sensing ; Real time ; Sleepiness</subject><ispartof>IEEE sensors journal, 2022-08, Vol.22 (15), p.15222-15234</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c2fa91fe7aa6dc5b2452c3f286deeffb0d6ad9349475fbf9e6da13ffec98a30a3</citedby><cites>FETCH-LOGICAL-c293t-c2fa91fe7aa6dc5b2452c3f286deeffb0d6ad9349475fbf9e6da13ffec98a30a3</cites><orcidid>0000-0003-0678-489X ; 0000-0001-7622-4746 ; 0000-0002-4926-3720 ; 0000-0002-3558-9690 ; 0000-0001-6613-2207 ; 0000-0002-0903-4579 ; 0000-0002-8493-1931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9813466$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9813466$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Sannyuya</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Yang, Xidong</creatorcontrib><creatorcontrib>Du, Yiming</creatorcontrib><creatorcontrib>Li, Menglin</creatorcontrib><creatorcontrib>Zhu, Xiaoliang</creatorcontrib><creatorcontrib>Dai, Zhicheng</creatorcontrib><title>Remote Drowsiness Detection Based on the mmWave FMCW Radar</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Drowsiness can lead to inefficiency and major disasters; thus it is important to address it in both academia and industry. Despite multiple types of research in this field, a nonintrusive classifier system for detecting drowsiness in real-time under a natural environment without specific stimulation is lacking. This study develops a real-time drowsiness detection system using a 77 GHz millimeter-wave (mmWave) frequency-modulated continuous wave radar. Specifically, firstly, a real-time mmWave processing module is proposed, which can adaptively suppress both stationary and non-stationary clutters. Secondly, a feature extraction module based on a hybrid of handcrafted and machine learning (ML) features is propsoed to obtain a holistic view of mmWave-based vital signals, in which ML features represent linear and temporal changes. Thirdly, a drowsiness classification model is proposed based on feature fusion and extreme gradient boosting algorithms, thus classifying a user's state into two categories: non-drowsy and drowsy. To confirm the proposed system's performance, it is validated on a self-collected dataset (n = 28). The experimental results show the following (i) the accuracy of heart rate evaluation is 96.4%, and (ii) based on 10-fold cross-validation, the proposed system gains a detection accuracy of 82.9% and outperforms the state-of-the-art approaches.</description><subject>Algorithms</subject><subject>Biomedical monitoring</subject><subject>Chirp</subject><subject>Classification</subject><subject>Clutter</subject><subject>Continuous wave radar</subject><subject>Data fusion</subject><subject>deep learning</subject><subject>drowsiness detection</subject><subject>Feature extraction</subject><subject>Heart beat</subject><subject>Heart rate</subject><subject>Machine learning</subject><subject>millimeter wave radar sensor</subject><subject>Millimeter waves</subject><subject>Modules</subject><subject>physiology</subject><subject>Radar</subject><subject>Radar detection</subject><subject>radar remote sensing</subject><subject>Real time</subject><subject>Sleepiness</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kElPwzAQhS0EEqXwAxAXS5xTvMULN-jCogJSAZWb5cZjkYo0rZ2C-PckasVl5h3em9H7EDqnZEApMVePr-PnASOMDTjVUmh5gHo0z3VGldCHneYkE1x9HKOTlJaEUKNy1UPXM6jqBvAo1j-pXEFKeAQNFE1Zr_CtS-BxK5pPwFU1d9-AJ0_DOZ457-IpOgruK8HZfvfR-2T8NrzPpi93D8ObaVYww5t2BmdoAOWc9EW-YCJnBQ9MSw8QwoJ46bzhwgiVh0UwIL2jPAQojHacON5Hl7u761hvtpAau6y3cdW-tEy2LSTnTLUuunMVsU4pQrDrWFYu_lpKbIfIdohsh8juEbWZi12mBIB_v9GUCyn5Hw3tYjY</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Liu, Sannyuya</creator><creator>Zhao, Liang</creator><creator>Yang, Xidong</creator><creator>Du, Yiming</creator><creator>Li, Menglin</creator><creator>Zhu, Xiaoliang</creator><creator>Dai, Zhicheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0678-489X</orcidid><orcidid>https://orcid.org/0000-0001-7622-4746</orcidid><orcidid>https://orcid.org/0000-0002-4926-3720</orcidid><orcidid>https://orcid.org/0000-0002-3558-9690</orcidid><orcidid>https://orcid.org/0000-0001-6613-2207</orcidid><orcidid>https://orcid.org/0000-0002-0903-4579</orcidid><orcidid>https://orcid.org/0000-0002-8493-1931</orcidid></search><sort><creationdate>20220801</creationdate><title>Remote Drowsiness Detection Based on the mmWave FMCW Radar</title><author>Liu, Sannyuya ; Zhao, Liang ; Yang, Xidong ; Du, Yiming ; Li, Menglin ; Zhu, Xiaoliang ; Dai, Zhicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c2fa91fe7aa6dc5b2452c3f286deeffb0d6ad9349475fbf9e6da13ffec98a30a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biomedical monitoring</topic><topic>Chirp</topic><topic>Classification</topic><topic>Clutter</topic><topic>Continuous wave radar</topic><topic>Data fusion</topic><topic>deep learning</topic><topic>drowsiness detection</topic><topic>Feature extraction</topic><topic>Heart beat</topic><topic>Heart rate</topic><topic>Machine learning</topic><topic>millimeter wave radar sensor</topic><topic>Millimeter waves</topic><topic>Modules</topic><topic>physiology</topic><topic>Radar</topic><topic>Radar detection</topic><topic>radar remote sensing</topic><topic>Real time</topic><topic>Sleepiness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Sannyuya</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Yang, Xidong</creatorcontrib><creatorcontrib>Du, Yiming</creatorcontrib><creatorcontrib>Li, Menglin</creatorcontrib><creatorcontrib>Zhu, Xiaoliang</creatorcontrib><creatorcontrib>Dai, Zhicheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Sannyuya</au><au>Zhao, Liang</au><au>Yang, Xidong</au><au>Du, Yiming</au><au>Li, Menglin</au><au>Zhu, Xiaoliang</au><au>Dai, Zhicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote Drowsiness Detection Based on the mmWave FMCW Radar</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>22</volume><issue>15</issue><spage>15222</spage><epage>15234</epage><pages>15222-15234</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Drowsiness can lead to inefficiency and major disasters; thus it is important to address it in both academia and industry. Despite multiple types of research in this field, a nonintrusive classifier system for detecting drowsiness in real-time under a natural environment without specific stimulation is lacking. This study develops a real-time drowsiness detection system using a 77 GHz millimeter-wave (mmWave) frequency-modulated continuous wave radar. Specifically, firstly, a real-time mmWave processing module is proposed, which can adaptively suppress both stationary and non-stationary clutters. Secondly, a feature extraction module based on a hybrid of handcrafted and machine learning (ML) features is propsoed to obtain a holistic view of mmWave-based vital signals, in which ML features represent linear and temporal changes. Thirdly, a drowsiness classification model is proposed based on feature fusion and extreme gradient boosting algorithms, thus classifying a user's state into two categories: non-drowsy and drowsy. To confirm the proposed system's performance, it is validated on a self-collected dataset (n = 28). The experimental results show the following (i) the accuracy of heart rate evaluation is 96.4%, and (ii) based on 10-fold cross-validation, the proposed system gains a detection accuracy of 82.9% and outperforms the state-of-the-art approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3186486</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0678-489X</orcidid><orcidid>https://orcid.org/0000-0001-7622-4746</orcidid><orcidid>https://orcid.org/0000-0002-4926-3720</orcidid><orcidid>https://orcid.org/0000-0002-3558-9690</orcidid><orcidid>https://orcid.org/0000-0001-6613-2207</orcidid><orcidid>https://orcid.org/0000-0002-0903-4579</orcidid><orcidid>https://orcid.org/0000-0002-8493-1931</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2022-08, Vol.22 (15), p.15222-15234 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9813466 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Biomedical monitoring Chirp Classification Clutter Continuous wave radar Data fusion deep learning drowsiness detection Feature extraction Heart beat Heart rate Machine learning millimeter wave radar sensor Millimeter waves Modules physiology Radar Radar detection radar remote sensing Real time Sleepiness |
title | Remote Drowsiness Detection Based on the mmWave FMCW Radar |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20Drowsiness%20Detection%20Based%20on%20the%20mmWave%20FMCW%20Radar&rft.jtitle=IEEE%20sensors%20journal&rft.au=Liu,%20Sannyuya&rft.date=2022-08-01&rft.volume=22&rft.issue=15&rft.spage=15222&rft.epage=15234&rft.pages=15222-15234&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3186486&rft_dat=%3Cproquest_RIE%3E2697563327%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697563327&rft_id=info:pmid/&rft_ieee_id=9813466&rfr_iscdi=true |