Simulation Design of G-Band FWG TWT Amplifier Enhanced by π-Mode Extended Interaction
This article studies and summarizes the operating characteristics of a {G} -band folded waveguide traveling wave tube (TWT) amplifier enhanced by the \pi -mode extended interaction cavities. Compared with conventional {G} -band TWTs, the proposed amplifier can at once obtain a higher gain in a sh...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2022-08, Vol.69 (8), p.4604-4610 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4610 |
---|---|
container_issue | 8 |
container_start_page | 4604 |
container_title | IEEE transactions on electron devices |
container_volume | 69 |
creator | Shi, Ningjie Zhang, Changqing Tian, Hanwen Wang, Shaomeng Wang, Zhanliang Zhang, Ping Tang, Tao Duan, Zhaoyun Lu, Zhigang Gong, Huarong Gong, Yubin |
description | This article studies and summarizes the operating characteristics of a {G} -band folded waveguide traveling wave tube (TWT) amplifier enhanced by the \pi -mode extended interaction cavities. Compared with conventional {G} -band TWTs, the proposed amplifier can at once obtain a higher gain in a shorter interaction circuit length and ensure a proper operating bandwidth. The key of the design is introducing the \pi -mode multigap resonant cavity with alternating wide and narrow slots, which will improve the working performance of the whole device by shortening the length of the interaction circuit, enhancing its interaction effect, and improving its gain of unit length. In this design, the operation bandwidth is expanded by stagger tuning technique. In addition, the influence of cavity loss is examined so that the optimal performance is achieved. The PIC simulation results show that when the operating voltage is 21 kV and the operating current 80 mA, the maximum average output power of the designed TWT amplifier is 65.78 W at 217.4 GHz, which is corresponding to the maximum gain and efficiency of 37.38 dB and 3.9%, respectively. The gain per unit length is 12.64 dB/cm and the 3-dB bandwidth is 3.5 GHz. |
doi_str_mv | 10.1109/TED.2022.3185017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9812469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9812469</ieee_id><sourcerecordid>2695154273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5b5b69a347d0983737734bd5718ba7be6abd00eac34e535fa14c81b4851544a3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6n7md091jathYoHgz0uu8lEU9pN3aRgb_5D_5IpFU_DDM_7DjwI3VIyopSYhzybjhhhbMSploSqMzSgUqrEpCI9RwNCqE4M1_wSXbXtul9TIdgAvb3W2_3GdXUT8BTa-j3gpsLz5NGFEs9Wc5yvcjze7jZ1VUPEWfhwoYAS-wP--U6emxJw9tVBKPvbInQQXXHsukYXldu0cPM3hyifZfnkKVm-zBeT8TIpmKFdIr30qXFcqJIYzRVXigtfSkW1d8pD6nxJCLiCC5BcVo6KQlMvtKRSCMeH6P5Uu4vN5x7azq6bfQz9R8tSc4SY4j1FTlQRm7aNUNldrLcuHiwl9ijP9vLsUZ79k9dH7k6RGgD-caMpE6nhvxd-aQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695154273</pqid></control><display><type>article</type><title>Simulation Design of G-Band FWG TWT Amplifier Enhanced by π-Mode Extended Interaction</title><source>IEEE Electronic Library (IEL)</source><creator>Shi, Ningjie ; Zhang, Changqing ; Tian, Hanwen ; Wang, Shaomeng ; Wang, Zhanliang ; Zhang, Ping ; Tang, Tao ; Duan, Zhaoyun ; Lu, Zhigang ; Gong, Huarong ; Gong, Yubin</creator><creatorcontrib>Shi, Ningjie ; Zhang, Changqing ; Tian, Hanwen ; Wang, Shaomeng ; Wang, Zhanliang ; Zhang, Ping ; Tang, Tao ; Duan, Zhaoyun ; Lu, Zhigang ; Gong, Huarong ; Gong, Yubin</creatorcontrib><description><![CDATA[This article studies and summarizes the operating characteristics of a <inline-formula> <tex-math notation="LaTeX">{G} </tex-math></inline-formula>-band folded waveguide traveling wave tube (TWT) amplifier enhanced by the <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>-mode extended interaction cavities. Compared with conventional <inline-formula> <tex-math notation="LaTeX">{G} </tex-math></inline-formula>-band TWTs, the proposed amplifier can at once obtain a higher gain in a shorter interaction circuit length and ensure a proper operating bandwidth. The key of the design is introducing the <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>-mode multigap resonant cavity with alternating wide and narrow slots, which will improve the working performance of the whole device by shortening the length of the interaction circuit, enhancing its interaction effect, and improving its gain of unit length. In this design, the operation bandwidth is expanded by stagger tuning technique. In addition, the influence of cavity loss is examined so that the optimal performance is achieved. The PIC simulation results show that when the operating voltage is 21 kV and the operating current 80 mA, the maximum average output power of the designed TWT amplifier is 65.78 W at 217.4 GHz, which is corresponding to the maximum gain and efficiency of 37.38 dB and 3.9%, respectively. The gain per unit length is 12.64 dB/cm and the 3-dB bandwidth is 3.5 GHz.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3185017</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">π -mode ; Amplification ; Amplifier design ; Bandwidth ; Bandwidths ; Circuits ; Electromagnetic scattering ; Electron beams ; Extended interaction resonant cavity with alternating wide and narrow slots ; Gain ; Holes ; Klystrons ; miniaturization ; new traveling wave tube (TWT) ; RLC circuits ; terahertz ; Traveling wave tubes ; Traveling waves ; Vacuum electronics ; Waveguides</subject><ispartof>IEEE transactions on electron devices, 2022-08, Vol.69 (8), p.4604-4610</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5b5b69a347d0983737734bd5718ba7be6abd00eac34e535fa14c81b4851544a3</citedby><cites>FETCH-LOGICAL-c291t-5b5b69a347d0983737734bd5718ba7be6abd00eac34e535fa14c81b4851544a3</cites><orcidid>0000-0001-6431-0559 ; 0000-0003-3014-1309 ; 0000-0003-2864-7749 ; 0000-0003-1215-3859 ; 0000-0002-1350-5329 ; 0000-0002-9559-1266 ; 0000-0002-2708-9418 ; 0000-0001-7438-5845 ; 0000-0002-2179-5223 ; 0000-0001-8413-1048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9812469$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9812469$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shi, Ningjie</creatorcontrib><creatorcontrib>Zhang, Changqing</creatorcontrib><creatorcontrib>Tian, Hanwen</creatorcontrib><creatorcontrib>Wang, Shaomeng</creatorcontrib><creatorcontrib>Wang, Zhanliang</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Tang, Tao</creatorcontrib><creatorcontrib>Duan, Zhaoyun</creatorcontrib><creatorcontrib>Lu, Zhigang</creatorcontrib><creatorcontrib>Gong, Huarong</creatorcontrib><creatorcontrib>Gong, Yubin</creatorcontrib><title>Simulation Design of G-Band FWG TWT Amplifier Enhanced by π-Mode Extended Interaction</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[This article studies and summarizes the operating characteristics of a <inline-formula> <tex-math notation="LaTeX">{G} </tex-math></inline-formula>-band folded waveguide traveling wave tube (TWT) amplifier enhanced by the <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>-mode extended interaction cavities. Compared with conventional <inline-formula> <tex-math notation="LaTeX">{G} </tex-math></inline-formula>-band TWTs, the proposed amplifier can at once obtain a higher gain in a shorter interaction circuit length and ensure a proper operating bandwidth. The key of the design is introducing the <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>-mode multigap resonant cavity with alternating wide and narrow slots, which will improve the working performance of the whole device by shortening the length of the interaction circuit, enhancing its interaction effect, and improving its gain of unit length. In this design, the operation bandwidth is expanded by stagger tuning technique. In addition, the influence of cavity loss is examined so that the optimal performance is achieved. The PIC simulation results show that when the operating voltage is 21 kV and the operating current 80 mA, the maximum average output power of the designed TWT amplifier is 65.78 W at 217.4 GHz, which is corresponding to the maximum gain and efficiency of 37.38 dB and 3.9%, respectively. The gain per unit length is 12.64 dB/cm and the 3-dB bandwidth is 3.5 GHz.]]></description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">π -mode</subject><subject>Amplification</subject><subject>Amplifier design</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Circuits</subject><subject>Electromagnetic scattering</subject><subject>Electron beams</subject><subject>Extended interaction resonant cavity with alternating wide and narrow slots</subject><subject>Gain</subject><subject>Holes</subject><subject>Klystrons</subject><subject>miniaturization</subject><subject>new traveling wave tube (TWT)</subject><subject>RLC circuits</subject><subject>terahertz</subject><subject>Traveling wave tubes</subject><subject>Traveling waves</subject><subject>Vacuum electronics</subject><subject>Waveguides</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6n7md091jathYoHgz0uu8lEU9pN3aRgb_5D_5IpFU_DDM_7DjwI3VIyopSYhzybjhhhbMSploSqMzSgUqrEpCI9RwNCqE4M1_wSXbXtul9TIdgAvb3W2_3GdXUT8BTa-j3gpsLz5NGFEs9Wc5yvcjze7jZ1VUPEWfhwoYAS-wP--U6emxJw9tVBKPvbInQQXXHsukYXldu0cPM3hyifZfnkKVm-zBeT8TIpmKFdIr30qXFcqJIYzRVXigtfSkW1d8pD6nxJCLiCC5BcVo6KQlMvtKRSCMeH6P5Uu4vN5x7azq6bfQz9R8tSc4SY4j1FTlQRm7aNUNldrLcuHiwl9ijP9vLsUZ79k9dH7k6RGgD-caMpE6nhvxd-aQ0</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Shi, Ningjie</creator><creator>Zhang, Changqing</creator><creator>Tian, Hanwen</creator><creator>Wang, Shaomeng</creator><creator>Wang, Zhanliang</creator><creator>Zhang, Ping</creator><creator>Tang, Tao</creator><creator>Duan, Zhaoyun</creator><creator>Lu, Zhigang</creator><creator>Gong, Huarong</creator><creator>Gong, Yubin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6431-0559</orcidid><orcidid>https://orcid.org/0000-0003-3014-1309</orcidid><orcidid>https://orcid.org/0000-0003-2864-7749</orcidid><orcidid>https://orcid.org/0000-0003-1215-3859</orcidid><orcidid>https://orcid.org/0000-0002-1350-5329</orcidid><orcidid>https://orcid.org/0000-0002-9559-1266</orcidid><orcidid>https://orcid.org/0000-0002-2708-9418</orcidid><orcidid>https://orcid.org/0000-0001-7438-5845</orcidid><orcidid>https://orcid.org/0000-0002-2179-5223</orcidid><orcidid>https://orcid.org/0000-0001-8413-1048</orcidid></search><sort><creationdate>20220801</creationdate><title>Simulation Design of G-Band FWG TWT Amplifier Enhanced by π-Mode Extended Interaction</title><author>Shi, Ningjie ; Zhang, Changqing ; Tian, Hanwen ; Wang, Shaomeng ; Wang, Zhanliang ; Zhang, Ping ; Tang, Tao ; Duan, Zhaoyun ; Lu, Zhigang ; Gong, Huarong ; Gong, Yubin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5b5b69a347d0983737734bd5718ba7be6abd00eac34e535fa14c81b4851544a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">π -mode</topic><topic>Amplification</topic><topic>Amplifier design</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Circuits</topic><topic>Electromagnetic scattering</topic><topic>Electron beams</topic><topic>Extended interaction resonant cavity with alternating wide and narrow slots</topic><topic>Gain</topic><topic>Holes</topic><topic>Klystrons</topic><topic>miniaturization</topic><topic>new traveling wave tube (TWT)</topic><topic>RLC circuits</topic><topic>terahertz</topic><topic>Traveling wave tubes</topic><topic>Traveling waves</topic><topic>Vacuum electronics</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Ningjie</creatorcontrib><creatorcontrib>Zhang, Changqing</creatorcontrib><creatorcontrib>Tian, Hanwen</creatorcontrib><creatorcontrib>Wang, Shaomeng</creatorcontrib><creatorcontrib>Wang, Zhanliang</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Tang, Tao</creatorcontrib><creatorcontrib>Duan, Zhaoyun</creatorcontrib><creatorcontrib>Lu, Zhigang</creatorcontrib><creatorcontrib>Gong, Huarong</creatorcontrib><creatorcontrib>Gong, Yubin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi, Ningjie</au><au>Zhang, Changqing</au><au>Tian, Hanwen</au><au>Wang, Shaomeng</au><au>Wang, Zhanliang</au><au>Zhang, Ping</au><au>Tang, Tao</au><au>Duan, Zhaoyun</au><au>Lu, Zhigang</au><au>Gong, Huarong</au><au>Gong, Yubin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation Design of G-Band FWG TWT Amplifier Enhanced by π-Mode Extended Interaction</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>69</volume><issue>8</issue><spage>4604</spage><epage>4610</epage><pages>4604-4610</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[This article studies and summarizes the operating characteristics of a <inline-formula> <tex-math notation="LaTeX">{G} </tex-math></inline-formula>-band folded waveguide traveling wave tube (TWT) amplifier enhanced by the <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>-mode extended interaction cavities. Compared with conventional <inline-formula> <tex-math notation="LaTeX">{G} </tex-math></inline-formula>-band TWTs, the proposed amplifier can at once obtain a higher gain in a shorter interaction circuit length and ensure a proper operating bandwidth. The key of the design is introducing the <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>-mode multigap resonant cavity with alternating wide and narrow slots, which will improve the working performance of the whole device by shortening the length of the interaction circuit, enhancing its interaction effect, and improving its gain of unit length. In this design, the operation bandwidth is expanded by stagger tuning technique. In addition, the influence of cavity loss is examined so that the optimal performance is achieved. The PIC simulation results show that when the operating voltage is 21 kV and the operating current 80 mA, the maximum average output power of the designed TWT amplifier is 65.78 W at 217.4 GHz, which is corresponding to the maximum gain and efficiency of 37.38 dB and 3.9%, respectively. The gain per unit length is 12.64 dB/cm and the 3-dB bandwidth is 3.5 GHz.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3185017</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6431-0559</orcidid><orcidid>https://orcid.org/0000-0003-3014-1309</orcidid><orcidid>https://orcid.org/0000-0003-2864-7749</orcidid><orcidid>https://orcid.org/0000-0003-1215-3859</orcidid><orcidid>https://orcid.org/0000-0002-1350-5329</orcidid><orcidid>https://orcid.org/0000-0002-9559-1266</orcidid><orcidid>https://orcid.org/0000-0002-2708-9418</orcidid><orcidid>https://orcid.org/0000-0001-7438-5845</orcidid><orcidid>https://orcid.org/0000-0002-2179-5223</orcidid><orcidid>https://orcid.org/0000-0001-8413-1048</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2022-08, Vol.69 (8), p.4604-4610 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_9812469 |
source | IEEE Electronic Library (IEL) |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">π -mode Amplification Amplifier design Bandwidth Bandwidths Circuits Electromagnetic scattering Electron beams Extended interaction resonant cavity with alternating wide and narrow slots Gain Holes Klystrons miniaturization new traveling wave tube (TWT) RLC circuits terahertz Traveling wave tubes Traveling waves Vacuum electronics Waveguides |
title | Simulation Design of G-Band FWG TWT Amplifier Enhanced by π-Mode Extended Interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20Design%20of%20G-Band%20FWG%20TWT%20Amplifier%20Enhanced%20by%20%CF%80-Mode%20Extended%20Interaction&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Shi,%20Ningjie&rft.date=2022-08-01&rft.volume=69&rft.issue=8&rft.spage=4604&rft.epage=4610&rft.pages=4604-4610&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3185017&rft_dat=%3Cproquest_RIE%3E2695154273%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695154273&rft_id=info:pmid/&rft_ieee_id=9812469&rfr_iscdi=true |