Simulation Design of G-Band FWG TWT Amplifier Enhanced by π-Mode Extended Interaction

This article studies and summarizes the operating characteristics of a {G} -band folded waveguide traveling wave tube (TWT) amplifier enhanced by the \pi -mode extended interaction cavities. Compared with conventional {G} -band TWTs, the proposed amplifier can at once obtain a higher gain in a sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2022-08, Vol.69 (8), p.4604-4610
Hauptverfasser: Shi, Ningjie, Zhang, Changqing, Tian, Hanwen, Wang, Shaomeng, Wang, Zhanliang, Zhang, Ping, Tang, Tao, Duan, Zhaoyun, Lu, Zhigang, Gong, Huarong, Gong, Yubin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4610
container_issue 8
container_start_page 4604
container_title IEEE transactions on electron devices
container_volume 69
creator Shi, Ningjie
Zhang, Changqing
Tian, Hanwen
Wang, Shaomeng
Wang, Zhanliang
Zhang, Ping
Tang, Tao
Duan, Zhaoyun
Lu, Zhigang
Gong, Huarong
Gong, Yubin
description This article studies and summarizes the operating characteristics of a {G} -band folded waveguide traveling wave tube (TWT) amplifier enhanced by the \pi -mode extended interaction cavities. Compared with conventional {G} -band TWTs, the proposed amplifier can at once obtain a higher gain in a shorter interaction circuit length and ensure a proper operating bandwidth. The key of the design is introducing the \pi -mode multigap resonant cavity with alternating wide and narrow slots, which will improve the working performance of the whole device by shortening the length of the interaction circuit, enhancing its interaction effect, and improving its gain of unit length. In this design, the operation bandwidth is expanded by stagger tuning technique. In addition, the influence of cavity loss is examined so that the optimal performance is achieved. The PIC simulation results show that when the operating voltage is 21 kV and the operating current 80 mA, the maximum average output power of the designed TWT amplifier is 65.78 W at 217.4 GHz, which is corresponding to the maximum gain and efficiency of 37.38 dB and 3.9%, respectively. The gain per unit length is 12.64 dB/cm and the 3-dB bandwidth is 3.5 GHz.
doi_str_mv 10.1109/TED.2022.3185017
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9812469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9812469</ieee_id><sourcerecordid>2695154273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5b5b69a347d0983737734bd5718ba7be6abd00eac34e535fa14c81b4851544a3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6n7md091jathYoHgz0uu8lEU9pN3aRgb_5D_5IpFU_DDM_7DjwI3VIyopSYhzybjhhhbMSploSqMzSgUqrEpCI9RwNCqE4M1_wSXbXtul9TIdgAvb3W2_3GdXUT8BTa-j3gpsLz5NGFEs9Wc5yvcjze7jZ1VUPEWfhwoYAS-wP--U6emxJw9tVBKPvbInQQXXHsukYXldu0cPM3hyifZfnkKVm-zBeT8TIpmKFdIr30qXFcqJIYzRVXigtfSkW1d8pD6nxJCLiCC5BcVo6KQlMvtKRSCMeH6P5Uu4vN5x7azq6bfQz9R8tSc4SY4j1FTlQRm7aNUNldrLcuHiwl9ijP9vLsUZ79k9dH7k6RGgD-caMpE6nhvxd-aQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695154273</pqid></control><display><type>article</type><title>Simulation Design of G-Band FWG TWT Amplifier Enhanced by π-Mode Extended Interaction</title><source>IEEE Electronic Library (IEL)</source><creator>Shi, Ningjie ; Zhang, Changqing ; Tian, Hanwen ; Wang, Shaomeng ; Wang, Zhanliang ; Zhang, Ping ; Tang, Tao ; Duan, Zhaoyun ; Lu, Zhigang ; Gong, Huarong ; Gong, Yubin</creator><creatorcontrib>Shi, Ningjie ; Zhang, Changqing ; Tian, Hanwen ; Wang, Shaomeng ; Wang, Zhanliang ; Zhang, Ping ; Tang, Tao ; Duan, Zhaoyun ; Lu, Zhigang ; Gong, Huarong ; Gong, Yubin</creatorcontrib><description><![CDATA[This article studies and summarizes the operating characteristics of a <inline-formula> <tex-math notation="LaTeX">{G} </tex-math></inline-formula>-band folded waveguide traveling wave tube (TWT) amplifier enhanced by the <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>-mode extended interaction cavities. Compared with conventional <inline-formula> <tex-math notation="LaTeX">{G} </tex-math></inline-formula>-band TWTs, the proposed amplifier can at once obtain a higher gain in a shorter interaction circuit length and ensure a proper operating bandwidth. The key of the design is introducing the <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>-mode multigap resonant cavity with alternating wide and narrow slots, which will improve the working performance of the whole device by shortening the length of the interaction circuit, enhancing its interaction effect, and improving its gain of unit length. In this design, the operation bandwidth is expanded by stagger tuning technique. In addition, the influence of cavity loss is examined so that the optimal performance is achieved. The PIC simulation results show that when the operating voltage is 21 kV and the operating current 80 mA, the maximum average output power of the designed TWT amplifier is 65.78 W at 217.4 GHz, which is corresponding to the maximum gain and efficiency of 37.38 dB and 3.9%, respectively. The gain per unit length is 12.64 dB/cm and the 3-dB bandwidth is 3.5 GHz.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3185017</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;π -mode ; Amplification ; Amplifier design ; Bandwidth ; Bandwidths ; Circuits ; Electromagnetic scattering ; Electron beams ; Extended interaction resonant cavity with alternating wide and narrow slots ; Gain ; Holes ; Klystrons ; miniaturization ; new traveling wave tube (TWT) ; RLC circuits ; terahertz ; Traveling wave tubes ; Traveling waves ; Vacuum electronics ; Waveguides</subject><ispartof>IEEE transactions on electron devices, 2022-08, Vol.69 (8), p.4604-4610</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5b5b69a347d0983737734bd5718ba7be6abd00eac34e535fa14c81b4851544a3</citedby><cites>FETCH-LOGICAL-c291t-5b5b69a347d0983737734bd5718ba7be6abd00eac34e535fa14c81b4851544a3</cites><orcidid>0000-0001-6431-0559 ; 0000-0003-3014-1309 ; 0000-0003-2864-7749 ; 0000-0003-1215-3859 ; 0000-0002-1350-5329 ; 0000-0002-9559-1266 ; 0000-0002-2708-9418 ; 0000-0001-7438-5845 ; 0000-0002-2179-5223 ; 0000-0001-8413-1048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9812469$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9812469$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shi, Ningjie</creatorcontrib><creatorcontrib>Zhang, Changqing</creatorcontrib><creatorcontrib>Tian, Hanwen</creatorcontrib><creatorcontrib>Wang, Shaomeng</creatorcontrib><creatorcontrib>Wang, Zhanliang</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Tang, Tao</creatorcontrib><creatorcontrib>Duan, Zhaoyun</creatorcontrib><creatorcontrib>Lu, Zhigang</creatorcontrib><creatorcontrib>Gong, Huarong</creatorcontrib><creatorcontrib>Gong, Yubin</creatorcontrib><title>Simulation Design of G-Band FWG TWT Amplifier Enhanced by π-Mode Extended Interaction</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[This article studies and summarizes the operating characteristics of a <inline-formula> <tex-math notation="LaTeX">{G} </tex-math></inline-formula>-band folded waveguide traveling wave tube (TWT) amplifier enhanced by the <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>-mode extended interaction cavities. Compared with conventional <inline-formula> <tex-math notation="LaTeX">{G} </tex-math></inline-formula>-band TWTs, the proposed amplifier can at once obtain a higher gain in a shorter interaction circuit length and ensure a proper operating bandwidth. The key of the design is introducing the <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>-mode multigap resonant cavity with alternating wide and narrow slots, which will improve the working performance of the whole device by shortening the length of the interaction circuit, enhancing its interaction effect, and improving its gain of unit length. In this design, the operation bandwidth is expanded by stagger tuning technique. In addition, the influence of cavity loss is examined so that the optimal performance is achieved. The PIC simulation results show that when the operating voltage is 21 kV and the operating current 80 mA, the maximum average output power of the designed TWT amplifier is 65.78 W at 217.4 GHz, which is corresponding to the maximum gain and efficiency of 37.38 dB and 3.9%, respectively. The gain per unit length is 12.64 dB/cm and the 3-dB bandwidth is 3.5 GHz.]]></description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;π -mode</subject><subject>Amplification</subject><subject>Amplifier design</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Circuits</subject><subject>Electromagnetic scattering</subject><subject>Electron beams</subject><subject>Extended interaction resonant cavity with alternating wide and narrow slots</subject><subject>Gain</subject><subject>Holes</subject><subject>Klystrons</subject><subject>miniaturization</subject><subject>new traveling wave tube (TWT)</subject><subject>RLC circuits</subject><subject>terahertz</subject><subject>Traveling wave tubes</subject><subject>Traveling waves</subject><subject>Vacuum electronics</subject><subject>Waveguides</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6n7md091jathYoHgz0uu8lEU9pN3aRgb_5D_5IpFU_DDM_7DjwI3VIyopSYhzybjhhhbMSploSqMzSgUqrEpCI9RwNCqE4M1_wSXbXtul9TIdgAvb3W2_3GdXUT8BTa-j3gpsLz5NGFEs9Wc5yvcjze7jZ1VUPEWfhwoYAS-wP--U6emxJw9tVBKPvbInQQXXHsukYXldu0cPM3hyifZfnkKVm-zBeT8TIpmKFdIr30qXFcqJIYzRVXigtfSkW1d8pD6nxJCLiCC5BcVo6KQlMvtKRSCMeH6P5Uu4vN5x7azq6bfQz9R8tSc4SY4j1FTlQRm7aNUNldrLcuHiwl9ijP9vLsUZ79k9dH7k6RGgD-caMpE6nhvxd-aQ0</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Shi, Ningjie</creator><creator>Zhang, Changqing</creator><creator>Tian, Hanwen</creator><creator>Wang, Shaomeng</creator><creator>Wang, Zhanliang</creator><creator>Zhang, Ping</creator><creator>Tang, Tao</creator><creator>Duan, Zhaoyun</creator><creator>Lu, Zhigang</creator><creator>Gong, Huarong</creator><creator>Gong, Yubin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6431-0559</orcidid><orcidid>https://orcid.org/0000-0003-3014-1309</orcidid><orcidid>https://orcid.org/0000-0003-2864-7749</orcidid><orcidid>https://orcid.org/0000-0003-1215-3859</orcidid><orcidid>https://orcid.org/0000-0002-1350-5329</orcidid><orcidid>https://orcid.org/0000-0002-9559-1266</orcidid><orcidid>https://orcid.org/0000-0002-2708-9418</orcidid><orcidid>https://orcid.org/0000-0001-7438-5845</orcidid><orcidid>https://orcid.org/0000-0002-2179-5223</orcidid><orcidid>https://orcid.org/0000-0001-8413-1048</orcidid></search><sort><creationdate>20220801</creationdate><title>Simulation Design of G-Band FWG TWT Amplifier Enhanced by π-Mode Extended Interaction</title><author>Shi, Ningjie ; Zhang, Changqing ; Tian, Hanwen ; Wang, Shaomeng ; Wang, Zhanliang ; Zhang, Ping ; Tang, Tao ; Duan, Zhaoyun ; Lu, Zhigang ; Gong, Huarong ; Gong, Yubin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5b5b69a347d0983737734bd5718ba7be6abd00eac34e535fa14c81b4851544a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;π -mode</topic><topic>Amplification</topic><topic>Amplifier design</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Circuits</topic><topic>Electromagnetic scattering</topic><topic>Electron beams</topic><topic>Extended interaction resonant cavity with alternating wide and narrow slots</topic><topic>Gain</topic><topic>Holes</topic><topic>Klystrons</topic><topic>miniaturization</topic><topic>new traveling wave tube (TWT)</topic><topic>RLC circuits</topic><topic>terahertz</topic><topic>Traveling wave tubes</topic><topic>Traveling waves</topic><topic>Vacuum electronics</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Ningjie</creatorcontrib><creatorcontrib>Zhang, Changqing</creatorcontrib><creatorcontrib>Tian, Hanwen</creatorcontrib><creatorcontrib>Wang, Shaomeng</creatorcontrib><creatorcontrib>Wang, Zhanliang</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Tang, Tao</creatorcontrib><creatorcontrib>Duan, Zhaoyun</creatorcontrib><creatorcontrib>Lu, Zhigang</creatorcontrib><creatorcontrib>Gong, Huarong</creatorcontrib><creatorcontrib>Gong, Yubin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi, Ningjie</au><au>Zhang, Changqing</au><au>Tian, Hanwen</au><au>Wang, Shaomeng</au><au>Wang, Zhanliang</au><au>Zhang, Ping</au><au>Tang, Tao</au><au>Duan, Zhaoyun</au><au>Lu, Zhigang</au><au>Gong, Huarong</au><au>Gong, Yubin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation Design of G-Band FWG TWT Amplifier Enhanced by π-Mode Extended Interaction</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>69</volume><issue>8</issue><spage>4604</spage><epage>4610</epage><pages>4604-4610</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[This article studies and summarizes the operating characteristics of a <inline-formula> <tex-math notation="LaTeX">{G} </tex-math></inline-formula>-band folded waveguide traveling wave tube (TWT) amplifier enhanced by the <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>-mode extended interaction cavities. Compared with conventional <inline-formula> <tex-math notation="LaTeX">{G} </tex-math></inline-formula>-band TWTs, the proposed amplifier can at once obtain a higher gain in a shorter interaction circuit length and ensure a proper operating bandwidth. The key of the design is introducing the <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>-mode multigap resonant cavity with alternating wide and narrow slots, which will improve the working performance of the whole device by shortening the length of the interaction circuit, enhancing its interaction effect, and improving its gain of unit length. In this design, the operation bandwidth is expanded by stagger tuning technique. In addition, the influence of cavity loss is examined so that the optimal performance is achieved. The PIC simulation results show that when the operating voltage is 21 kV and the operating current 80 mA, the maximum average output power of the designed TWT amplifier is 65.78 W at 217.4 GHz, which is corresponding to the maximum gain and efficiency of 37.38 dB and 3.9%, respectively. The gain per unit length is 12.64 dB/cm and the 3-dB bandwidth is 3.5 GHz.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3185017</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6431-0559</orcidid><orcidid>https://orcid.org/0000-0003-3014-1309</orcidid><orcidid>https://orcid.org/0000-0003-2864-7749</orcidid><orcidid>https://orcid.org/0000-0003-1215-3859</orcidid><orcidid>https://orcid.org/0000-0002-1350-5329</orcidid><orcidid>https://orcid.org/0000-0002-9559-1266</orcidid><orcidid>https://orcid.org/0000-0002-2708-9418</orcidid><orcidid>https://orcid.org/0000-0001-7438-5845</orcidid><orcidid>https://orcid.org/0000-0002-2179-5223</orcidid><orcidid>https://orcid.org/0000-0001-8413-1048</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2022-08, Vol.69 (8), p.4604-4610
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_9812469
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">π -mode
Amplification
Amplifier design
Bandwidth
Bandwidths
Circuits
Electromagnetic scattering
Electron beams
Extended interaction resonant cavity with alternating wide and narrow slots
Gain
Holes
Klystrons
miniaturization
new traveling wave tube (TWT)
RLC circuits
terahertz
Traveling wave tubes
Traveling waves
Vacuum electronics
Waveguides
title Simulation Design of G-Band FWG TWT Amplifier Enhanced by π-Mode Extended Interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20Design%20of%20G-Band%20FWG%20TWT%20Amplifier%20Enhanced%20by%20%CF%80-Mode%20Extended%20Interaction&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Shi,%20Ningjie&rft.date=2022-08-01&rft.volume=69&rft.issue=8&rft.spage=4604&rft.epage=4610&rft.pages=4604-4610&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3185017&rft_dat=%3Cproquest_RIE%3E2695154273%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695154273&rft_id=info:pmid/&rft_ieee_id=9812469&rfr_iscdi=true