MANTA: Multi-Lane Capsule Network Assisted Traffic Classification for 5G Network Slicing
As network slicing is an enabling technology for the fifth-generation (5G) networks, it comes with complex challenges to ensure that resource management is consistent with slice tenant activities to provide better performance and cost-effective services to different tenants tailored to their needs....
Gespeichert in:
Veröffentlicht in: | IEEE wireless communications letters 2022-09, Vol.11 (9), p.1905-1909 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1909 |
---|---|
container_issue | 9 |
container_start_page | 1905 |
container_title | IEEE wireless communications letters |
container_volume | 11 |
creator | Mareri, Bruce Owusu Boateng, Gordon Ou, Ruijie Sun, Guolin Pang, Yu Liu, Guisong |
description | As network slicing is an enabling technology for the fifth-generation (5G) networks, it comes with complex challenges to ensure that resource management is consistent with slice tenant activities to provide better performance and cost-effective services to different tenants tailored to their needs. To this end, traffic classification is fundamental for the provisioning of the resources in a network by analyzing the network traffic to anticipate future requests. However, the massive increase of heterogeneous traffic features challenges dynamic network slices traffic classification. Previous literature have explored statistical and machine learning techniques but are constrained by feature engineering and computational costs. In this letter, we propose the multi-lane CapsNet assisted network traffic classification (MANTA), a framework based on multi-lane Capsule Networks (CapsNet) deep learning technique, to identify and classify heterogeneous traffic flows in 5G network slicing. Furthermore, we conduct a comparative analysis of the model with previous literature using deep learning techniques. The experimental results exhibit improved performance with high accuracy of 97.3975%, compared with other classifiers from previous literature. |
doi_str_mv | 10.1109/LWC.2022.3186529 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9807382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9807382</ieee_id><sourcerecordid>2712056604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b4a093d03a52c843289a8aa75950e1382bd9f476efce8ee92e404152ba0088133</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOObeBV8CPndeLk2b-FaKTmGbD070LWRdKpm1nUmL-N-bsbF7uY_j990dHyHXDKaMgbqbv5dTBMQpZzITqM7ICFmGCfJUnJ80zy_JJIQtxMqAIZMj8rEolqvini6GpnfJ3LSWlmYXhsbSpe1_O_9FixBc6O2Grrypa1fRsjFxFJXpXdfSuvNUzE74a-Mq135ekYvaNMFOjn1M3h4fVuVTMn-ZPZfFPKlQsT5ZpwYU3wA3AiuZcpTKSGNyoQRYxiWuN6pO88zWlZXWKrQppEzg2gBIyTgfk9vD3p3vfgYber3tBt_GkxpzhiCyDNJIwYGqfBeCt7Xeefdt_J9moPcR6hih3keojxFGy83B4qy1J1xJyONX_B8w72pr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712056604</pqid></control><display><type>article</type><title>MANTA: Multi-Lane Capsule Network Assisted Traffic Classification for 5G Network Slicing</title><source>IEEE Electronic Library (IEL)</source><creator>Mareri, Bruce ; Owusu Boateng, Gordon ; Ou, Ruijie ; Sun, Guolin ; Pang, Yu ; Liu, Guisong</creator><creatorcontrib>Mareri, Bruce ; Owusu Boateng, Gordon ; Ou, Ruijie ; Sun, Guolin ; Pang, Yu ; Liu, Guisong</creatorcontrib><description>As network slicing is an enabling technology for the fifth-generation (5G) networks, it comes with complex challenges to ensure that resource management is consistent with slice tenant activities to provide better performance and cost-effective services to different tenants tailored to their needs. To this end, traffic classification is fundamental for the provisioning of the resources in a network by analyzing the network traffic to anticipate future requests. However, the massive increase of heterogeneous traffic features challenges dynamic network slices traffic classification. Previous literature have explored statistical and machine learning techniques but are constrained by feature engineering and computational costs. In this letter, we propose the multi-lane CapsNet assisted network traffic classification (MANTA), a framework based on multi-lane Capsule Networks (CapsNet) deep learning technique, to identify and classify heterogeneous traffic flows in 5G network slicing. Furthermore, we conduct a comparative analysis of the model with previous literature using deep learning techniques. The experimental results exhibit improved performance with high accuracy of 97.3975%, compared with other classifiers from previous literature.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2022.3186529</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; 5G networks ; Aggregates ; automatic feature extraction ; Classification ; Communications traffic ; Computational modeling ; Deep learning ; Internet of Things ; Machine learning ; multi-lane capsnet ; Network slicing ; Provisioning ; Resource management ; traffic classification ; Traffic flow ; Wireless networks</subject><ispartof>IEEE wireless communications letters, 2022-09, Vol.11 (9), p.1905-1909</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b4a093d03a52c843289a8aa75950e1382bd9f476efce8ee92e404152ba0088133</citedby><cites>FETCH-LOGICAL-c291t-b4a093d03a52c843289a8aa75950e1382bd9f476efce8ee92e404152ba0088133</cites><orcidid>0000-0003-2360-0466 ; 0000-0002-7923-367X ; 0000-0001-9754-7261 ; 0000-0002-7507-5387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9807382$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9807382$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mareri, Bruce</creatorcontrib><creatorcontrib>Owusu Boateng, Gordon</creatorcontrib><creatorcontrib>Ou, Ruijie</creatorcontrib><creatorcontrib>Sun, Guolin</creatorcontrib><creatorcontrib>Pang, Yu</creatorcontrib><creatorcontrib>Liu, Guisong</creatorcontrib><title>MANTA: Multi-Lane Capsule Network Assisted Traffic Classification for 5G Network Slicing</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>As network slicing is an enabling technology for the fifth-generation (5G) networks, it comes with complex challenges to ensure that resource management is consistent with slice tenant activities to provide better performance and cost-effective services to different tenants tailored to their needs. To this end, traffic classification is fundamental for the provisioning of the resources in a network by analyzing the network traffic to anticipate future requests. However, the massive increase of heterogeneous traffic features challenges dynamic network slices traffic classification. Previous literature have explored statistical and machine learning techniques but are constrained by feature engineering and computational costs. In this letter, we propose the multi-lane CapsNet assisted network traffic classification (MANTA), a framework based on multi-lane Capsule Networks (CapsNet) deep learning technique, to identify and classify heterogeneous traffic flows in 5G network slicing. Furthermore, we conduct a comparative analysis of the model with previous literature using deep learning techniques. The experimental results exhibit improved performance with high accuracy of 97.3975%, compared with other classifiers from previous literature.</description><subject>5G mobile communication</subject><subject>5G networks</subject><subject>Aggregates</subject><subject>automatic feature extraction</subject><subject>Classification</subject><subject>Communications traffic</subject><subject>Computational modeling</subject><subject>Deep learning</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>multi-lane capsnet</subject><subject>Network slicing</subject><subject>Provisioning</subject><subject>Resource management</subject><subject>traffic classification</subject><subject>Traffic flow</subject><subject>Wireless networks</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQxoMoOObeBV8CPndeLk2b-FaKTmGbD070LWRdKpm1nUmL-N-bsbF7uY_j990dHyHXDKaMgbqbv5dTBMQpZzITqM7ICFmGCfJUnJ80zy_JJIQtxMqAIZMj8rEolqvini6GpnfJ3LSWlmYXhsbSpe1_O_9FixBc6O2Grrypa1fRsjFxFJXpXdfSuvNUzE74a-Mq135ekYvaNMFOjn1M3h4fVuVTMn-ZPZfFPKlQsT5ZpwYU3wA3AiuZcpTKSGNyoQRYxiWuN6pO88zWlZXWKrQppEzg2gBIyTgfk9vD3p3vfgYber3tBt_GkxpzhiCyDNJIwYGqfBeCt7Xeefdt_J9moPcR6hih3keojxFGy83B4qy1J1xJyONX_B8w72pr</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Mareri, Bruce</creator><creator>Owusu Boateng, Gordon</creator><creator>Ou, Ruijie</creator><creator>Sun, Guolin</creator><creator>Pang, Yu</creator><creator>Liu, Guisong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2360-0466</orcidid><orcidid>https://orcid.org/0000-0002-7923-367X</orcidid><orcidid>https://orcid.org/0000-0001-9754-7261</orcidid><orcidid>https://orcid.org/0000-0002-7507-5387</orcidid></search><sort><creationdate>20220901</creationdate><title>MANTA: Multi-Lane Capsule Network Assisted Traffic Classification for 5G Network Slicing</title><author>Mareri, Bruce ; Owusu Boateng, Gordon ; Ou, Ruijie ; Sun, Guolin ; Pang, Yu ; Liu, Guisong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b4a093d03a52c843289a8aa75950e1382bd9f476efce8ee92e404152ba0088133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>5G mobile communication</topic><topic>5G networks</topic><topic>Aggregates</topic><topic>automatic feature extraction</topic><topic>Classification</topic><topic>Communications traffic</topic><topic>Computational modeling</topic><topic>Deep learning</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>multi-lane capsnet</topic><topic>Network slicing</topic><topic>Provisioning</topic><topic>Resource management</topic><topic>traffic classification</topic><topic>Traffic flow</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mareri, Bruce</creatorcontrib><creatorcontrib>Owusu Boateng, Gordon</creatorcontrib><creatorcontrib>Ou, Ruijie</creatorcontrib><creatorcontrib>Sun, Guolin</creatorcontrib><creatorcontrib>Pang, Yu</creatorcontrib><creatorcontrib>Liu, Guisong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mareri, Bruce</au><au>Owusu Boateng, Gordon</au><au>Ou, Ruijie</au><au>Sun, Guolin</au><au>Pang, Yu</au><au>Liu, Guisong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MANTA: Multi-Lane Capsule Network Assisted Traffic Classification for 5G Network Slicing</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>11</volume><issue>9</issue><spage>1905</spage><epage>1909</epage><pages>1905-1909</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>As network slicing is an enabling technology for the fifth-generation (5G) networks, it comes with complex challenges to ensure that resource management is consistent with slice tenant activities to provide better performance and cost-effective services to different tenants tailored to their needs. To this end, traffic classification is fundamental for the provisioning of the resources in a network by analyzing the network traffic to anticipate future requests. However, the massive increase of heterogeneous traffic features challenges dynamic network slices traffic classification. Previous literature have explored statistical and machine learning techniques but are constrained by feature engineering and computational costs. In this letter, we propose the multi-lane CapsNet assisted network traffic classification (MANTA), a framework based on multi-lane Capsule Networks (CapsNet) deep learning technique, to identify and classify heterogeneous traffic flows in 5G network slicing. Furthermore, we conduct a comparative analysis of the model with previous literature using deep learning techniques. The experimental results exhibit improved performance with high accuracy of 97.3975%, compared with other classifiers from previous literature.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2022.3186529</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2360-0466</orcidid><orcidid>https://orcid.org/0000-0002-7923-367X</orcidid><orcidid>https://orcid.org/0000-0001-9754-7261</orcidid><orcidid>https://orcid.org/0000-0002-7507-5387</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-2337 |
ispartof | IEEE wireless communications letters, 2022-09, Vol.11 (9), p.1905-1909 |
issn | 2162-2337 2162-2345 |
language | eng |
recordid | cdi_ieee_primary_9807382 |
source | IEEE Electronic Library (IEL) |
subjects | 5G mobile communication 5G networks Aggregates automatic feature extraction Classification Communications traffic Computational modeling Deep learning Internet of Things Machine learning multi-lane capsnet Network slicing Provisioning Resource management traffic classification Traffic flow Wireless networks |
title | MANTA: Multi-Lane Capsule Network Assisted Traffic Classification for 5G Network Slicing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MANTA:%20Multi-Lane%20Capsule%20Network%20Assisted%20Traffic%20Classification%20for%205G%20Network%20Slicing&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Mareri,%20Bruce&rft.date=2022-09-01&rft.volume=11&rft.issue=9&rft.spage=1905&rft.epage=1909&rft.pages=1905-1909&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2022.3186529&rft_dat=%3Cproquest_RIE%3E2712056604%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712056604&rft_id=info:pmid/&rft_ieee_id=9807382&rfr_iscdi=true |