MANTA: Multi-Lane Capsule Network Assisted Traffic Classification for 5G Network Slicing

As network slicing is an enabling technology for the fifth-generation (5G) networks, it comes with complex challenges to ensure that resource management is consistent with slice tenant activities to provide better performance and cost-effective services to different tenants tailored to their needs....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2022-09, Vol.11 (9), p.1905-1909
Hauptverfasser: Mareri, Bruce, Owusu Boateng, Gordon, Ou, Ruijie, Sun, Guolin, Pang, Yu, Liu, Guisong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1909
container_issue 9
container_start_page 1905
container_title IEEE wireless communications letters
container_volume 11
creator Mareri, Bruce
Owusu Boateng, Gordon
Ou, Ruijie
Sun, Guolin
Pang, Yu
Liu, Guisong
description As network slicing is an enabling technology for the fifth-generation (5G) networks, it comes with complex challenges to ensure that resource management is consistent with slice tenant activities to provide better performance and cost-effective services to different tenants tailored to their needs. To this end, traffic classification is fundamental for the provisioning of the resources in a network by analyzing the network traffic to anticipate future requests. However, the massive increase of heterogeneous traffic features challenges dynamic network slices traffic classification. Previous literature have explored statistical and machine learning techniques but are constrained by feature engineering and computational costs. In this letter, we propose the multi-lane CapsNet assisted network traffic classification (MANTA), a framework based on multi-lane Capsule Networks (CapsNet) deep learning technique, to identify and classify heterogeneous traffic flows in 5G network slicing. Furthermore, we conduct a comparative analysis of the model with previous literature using deep learning techniques. The experimental results exhibit improved performance with high accuracy of 97.3975%, compared with other classifiers from previous literature.
doi_str_mv 10.1109/LWC.2022.3186529
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9807382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9807382</ieee_id><sourcerecordid>2712056604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b4a093d03a52c843289a8aa75950e1382bd9f476efce8ee92e404152ba0088133</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOObeBV8CPndeLk2b-FaKTmGbD070LWRdKpm1nUmL-N-bsbF7uY_j990dHyHXDKaMgbqbv5dTBMQpZzITqM7ICFmGCfJUnJ80zy_JJIQtxMqAIZMj8rEolqvini6GpnfJ3LSWlmYXhsbSpe1_O_9FixBc6O2Grrypa1fRsjFxFJXpXdfSuvNUzE74a-Mq135ekYvaNMFOjn1M3h4fVuVTMn-ZPZfFPKlQsT5ZpwYU3wA3AiuZcpTKSGNyoQRYxiWuN6pO88zWlZXWKrQppEzg2gBIyTgfk9vD3p3vfgYber3tBt_GkxpzhiCyDNJIwYGqfBeCt7Xeefdt_J9moPcR6hih3keojxFGy83B4qy1J1xJyONX_B8w72pr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712056604</pqid></control><display><type>article</type><title>MANTA: Multi-Lane Capsule Network Assisted Traffic Classification for 5G Network Slicing</title><source>IEEE Electronic Library (IEL)</source><creator>Mareri, Bruce ; Owusu Boateng, Gordon ; Ou, Ruijie ; Sun, Guolin ; Pang, Yu ; Liu, Guisong</creator><creatorcontrib>Mareri, Bruce ; Owusu Boateng, Gordon ; Ou, Ruijie ; Sun, Guolin ; Pang, Yu ; Liu, Guisong</creatorcontrib><description>As network slicing is an enabling technology for the fifth-generation (5G) networks, it comes with complex challenges to ensure that resource management is consistent with slice tenant activities to provide better performance and cost-effective services to different tenants tailored to their needs. To this end, traffic classification is fundamental for the provisioning of the resources in a network by analyzing the network traffic to anticipate future requests. However, the massive increase of heterogeneous traffic features challenges dynamic network slices traffic classification. Previous literature have explored statistical and machine learning techniques but are constrained by feature engineering and computational costs. In this letter, we propose the multi-lane CapsNet assisted network traffic classification (MANTA), a framework based on multi-lane Capsule Networks (CapsNet) deep learning technique, to identify and classify heterogeneous traffic flows in 5G network slicing. Furthermore, we conduct a comparative analysis of the model with previous literature using deep learning techniques. The experimental results exhibit improved performance with high accuracy of 97.3975%, compared with other classifiers from previous literature.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2022.3186529</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; 5G networks ; Aggregates ; automatic feature extraction ; Classification ; Communications traffic ; Computational modeling ; Deep learning ; Internet of Things ; Machine learning ; multi-lane capsnet ; Network slicing ; Provisioning ; Resource management ; traffic classification ; Traffic flow ; Wireless networks</subject><ispartof>IEEE wireless communications letters, 2022-09, Vol.11 (9), p.1905-1909</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b4a093d03a52c843289a8aa75950e1382bd9f476efce8ee92e404152ba0088133</citedby><cites>FETCH-LOGICAL-c291t-b4a093d03a52c843289a8aa75950e1382bd9f476efce8ee92e404152ba0088133</cites><orcidid>0000-0003-2360-0466 ; 0000-0002-7923-367X ; 0000-0001-9754-7261 ; 0000-0002-7507-5387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9807382$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9807382$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mareri, Bruce</creatorcontrib><creatorcontrib>Owusu Boateng, Gordon</creatorcontrib><creatorcontrib>Ou, Ruijie</creatorcontrib><creatorcontrib>Sun, Guolin</creatorcontrib><creatorcontrib>Pang, Yu</creatorcontrib><creatorcontrib>Liu, Guisong</creatorcontrib><title>MANTA: Multi-Lane Capsule Network Assisted Traffic Classification for 5G Network Slicing</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>As network slicing is an enabling technology for the fifth-generation (5G) networks, it comes with complex challenges to ensure that resource management is consistent with slice tenant activities to provide better performance and cost-effective services to different tenants tailored to their needs. To this end, traffic classification is fundamental for the provisioning of the resources in a network by analyzing the network traffic to anticipate future requests. However, the massive increase of heterogeneous traffic features challenges dynamic network slices traffic classification. Previous literature have explored statistical and machine learning techniques but are constrained by feature engineering and computational costs. In this letter, we propose the multi-lane CapsNet assisted network traffic classification (MANTA), a framework based on multi-lane Capsule Networks (CapsNet) deep learning technique, to identify and classify heterogeneous traffic flows in 5G network slicing. Furthermore, we conduct a comparative analysis of the model with previous literature using deep learning techniques. The experimental results exhibit improved performance with high accuracy of 97.3975%, compared with other classifiers from previous literature.</description><subject>5G mobile communication</subject><subject>5G networks</subject><subject>Aggregates</subject><subject>automatic feature extraction</subject><subject>Classification</subject><subject>Communications traffic</subject><subject>Computational modeling</subject><subject>Deep learning</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>multi-lane capsnet</subject><subject>Network slicing</subject><subject>Provisioning</subject><subject>Resource management</subject><subject>traffic classification</subject><subject>Traffic flow</subject><subject>Wireless networks</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQxoMoOObeBV8CPndeLk2b-FaKTmGbD070LWRdKpm1nUmL-N-bsbF7uY_j990dHyHXDKaMgbqbv5dTBMQpZzITqM7ICFmGCfJUnJ80zy_JJIQtxMqAIZMj8rEolqvini6GpnfJ3LSWlmYXhsbSpe1_O_9FixBc6O2Grrypa1fRsjFxFJXpXdfSuvNUzE74a-Mq135ekYvaNMFOjn1M3h4fVuVTMn-ZPZfFPKlQsT5ZpwYU3wA3AiuZcpTKSGNyoQRYxiWuN6pO88zWlZXWKrQppEzg2gBIyTgfk9vD3p3vfgYber3tBt_GkxpzhiCyDNJIwYGqfBeCt7Xeefdt_J9moPcR6hih3keojxFGy83B4qy1J1xJyONX_B8w72pr</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Mareri, Bruce</creator><creator>Owusu Boateng, Gordon</creator><creator>Ou, Ruijie</creator><creator>Sun, Guolin</creator><creator>Pang, Yu</creator><creator>Liu, Guisong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2360-0466</orcidid><orcidid>https://orcid.org/0000-0002-7923-367X</orcidid><orcidid>https://orcid.org/0000-0001-9754-7261</orcidid><orcidid>https://orcid.org/0000-0002-7507-5387</orcidid></search><sort><creationdate>20220901</creationdate><title>MANTA: Multi-Lane Capsule Network Assisted Traffic Classification for 5G Network Slicing</title><author>Mareri, Bruce ; Owusu Boateng, Gordon ; Ou, Ruijie ; Sun, Guolin ; Pang, Yu ; Liu, Guisong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b4a093d03a52c843289a8aa75950e1382bd9f476efce8ee92e404152ba0088133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>5G mobile communication</topic><topic>5G networks</topic><topic>Aggregates</topic><topic>automatic feature extraction</topic><topic>Classification</topic><topic>Communications traffic</topic><topic>Computational modeling</topic><topic>Deep learning</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>multi-lane capsnet</topic><topic>Network slicing</topic><topic>Provisioning</topic><topic>Resource management</topic><topic>traffic classification</topic><topic>Traffic flow</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mareri, Bruce</creatorcontrib><creatorcontrib>Owusu Boateng, Gordon</creatorcontrib><creatorcontrib>Ou, Ruijie</creatorcontrib><creatorcontrib>Sun, Guolin</creatorcontrib><creatorcontrib>Pang, Yu</creatorcontrib><creatorcontrib>Liu, Guisong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mareri, Bruce</au><au>Owusu Boateng, Gordon</au><au>Ou, Ruijie</au><au>Sun, Guolin</au><au>Pang, Yu</au><au>Liu, Guisong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MANTA: Multi-Lane Capsule Network Assisted Traffic Classification for 5G Network Slicing</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>11</volume><issue>9</issue><spage>1905</spage><epage>1909</epage><pages>1905-1909</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>As network slicing is an enabling technology for the fifth-generation (5G) networks, it comes with complex challenges to ensure that resource management is consistent with slice tenant activities to provide better performance and cost-effective services to different tenants tailored to their needs. To this end, traffic classification is fundamental for the provisioning of the resources in a network by analyzing the network traffic to anticipate future requests. However, the massive increase of heterogeneous traffic features challenges dynamic network slices traffic classification. Previous literature have explored statistical and machine learning techniques but are constrained by feature engineering and computational costs. In this letter, we propose the multi-lane CapsNet assisted network traffic classification (MANTA), a framework based on multi-lane Capsule Networks (CapsNet) deep learning technique, to identify and classify heterogeneous traffic flows in 5G network slicing. Furthermore, we conduct a comparative analysis of the model with previous literature using deep learning techniques. The experimental results exhibit improved performance with high accuracy of 97.3975%, compared with other classifiers from previous literature.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2022.3186529</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2360-0466</orcidid><orcidid>https://orcid.org/0000-0002-7923-367X</orcidid><orcidid>https://orcid.org/0000-0001-9754-7261</orcidid><orcidid>https://orcid.org/0000-0002-7507-5387</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2022-09, Vol.11 (9), p.1905-1909
issn 2162-2337
2162-2345
language eng
recordid cdi_ieee_primary_9807382
source IEEE Electronic Library (IEL)
subjects 5G mobile communication
5G networks
Aggregates
automatic feature extraction
Classification
Communications traffic
Computational modeling
Deep learning
Internet of Things
Machine learning
multi-lane capsnet
Network slicing
Provisioning
Resource management
traffic classification
Traffic flow
Wireless networks
title MANTA: Multi-Lane Capsule Network Assisted Traffic Classification for 5G Network Slicing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MANTA:%20Multi-Lane%20Capsule%20Network%20Assisted%20Traffic%20Classification%20for%205G%20Network%20Slicing&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Mareri,%20Bruce&rft.date=2022-09-01&rft.volume=11&rft.issue=9&rft.spage=1905&rft.epage=1909&rft.pages=1905-1909&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2022.3186529&rft_dat=%3Cproquest_RIE%3E2712056604%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712056604&rft_id=info:pmid/&rft_ieee_id=9807382&rfr_iscdi=true