Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor Imagery Classification
Deep learning (DL) has been widely investigated in a vast majority of applications in electroencephalography (EEG)-based brain-computer interfaces (BCIs), especially for motor imagery (MI) classification in the past five years. The mainstream DL methodology for the MI-EEG classification exploits the...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2023-12, Vol.34 (12), p.10955-10969 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10969 |
---|---|
container_issue | 12 |
container_start_page | 10955 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 34 |
creator | Ju, Ce Guan, Cuntai |
description | Deep learning (DL) has been widely investigated in a vast majority of applications in electroencephalography (EEG)-based brain-computer interfaces (BCIs), especially for motor imagery (MI) classification in the past five years. The mainstream DL methodology for the MI-EEG classification exploits the temporospatial patterns of EEG signals using convolutional neural networks (CNNs), which have been particularly successful in visual images. However, since the statistical characteristics of visual images depart radically from EEG signals, a natural question arises whether an alternative network architecture exists apart from CNNs. To address this question, we propose a novel geometric DL (GDL) framework called Tensor-CSPNet, which characterizes spatial covariance matrices derived from EEG signals on symmetric positive definite (SPD) manifolds and fully captures the temporospatiofrequency patterns using existing deep neural networks on SPD manifolds, integrating with experiences from many successful MI-EEG classifiers to optimize the framework. In the experiments, Tensor-CSPNet attains or slightly outperforms the current state-of-the-art performance on the cross-validation and holdout scenarios in two commonly used MI-EEG datasets. Moreover, the visualization and interpretability analyses also exhibit the validity of Tensor-CSPNet for the MI-EEG classification. To conclude, in this study, we provide a feasible answer to the question by generalizing the DL methodologies on SPD manifolds, which indicates the start of a specific GDL methodology for the MI-EEG classification. |
doi_str_mv | 10.1109/TNNLS.2022.3172108 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9805775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9805775</ieee_id><sourcerecordid>2895881784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-f7f09536e7f2b2de02fab7567c8d2c485ce2984c60753091645d137668f7281c3</originalsourceid><addsrcrecordid>eNpdkE1PGzEQhq2qqKDAH6AXS1x62WCP1x_LDYWPRgoBiSDByTLOGC3dXQd70yr_nk2DODCHmTk872j0EHLM2ZhzVp0u5vPZ_RgYwFhwDZyZb-QAuIIChDHfP3f9uE-Ocn5lQykmVVn9IPtC6rISoA7I0wK7HFMxub-bY39Gz-k8_sWGXmNssU-1pxeIKzpDl7q6e6FXybX4L6Y_NMREb2I_9GnrXjBt6KRxOdeh9q6vY3dI9oJrMh59zBF5uLpcTH4Xs9vr6eR8VnihoS-CDqySQqEO8AxLZBDcs5ZKe7MEXxrpESpTesW0FKziqpRLLrRSJmgw3IsR-bW7u0rxbY25t22dPTaN6zCuswVlOCuV1mJAT76gr3GduuE7C6aSxnBtyoGCHeVTzDlhsKtUty5tLGd2697-d2-37u2H-yH0cxeqEfEzUBkm9fD3O_Q7e_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895881784</pqid></control><display><type>article</type><title>Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor Imagery Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Ju, Ce ; Guan, Cuntai</creator><creatorcontrib>Ju, Ce ; Guan, Cuntai</creatorcontrib><description>Deep learning (DL) has been widely investigated in a vast majority of applications in electroencephalography (EEG)-based brain-computer interfaces (BCIs), especially for motor imagery (MI) classification in the past five years. The mainstream DL methodology for the MI-EEG classification exploits the temporospatial patterns of EEG signals using convolutional neural networks (CNNs), which have been particularly successful in visual images. However, since the statistical characteristics of visual images depart radically from EEG signals, a natural question arises whether an alternative network architecture exists apart from CNNs. To address this question, we propose a novel geometric DL (GDL) framework called Tensor-CSPNet, which characterizes spatial covariance matrices derived from EEG signals on symmetric positive definite (SPD) manifolds and fully captures the temporospatiofrequency patterns using existing deep neural networks on SPD manifolds, integrating with experiences from many successful MI-EEG classifiers to optimize the framework. In the experiments, Tensor-CSPNet attains or slightly outperforms the current state-of-the-art performance on the cross-validation and holdout scenarios in two commonly used MI-EEG datasets. Moreover, the visualization and interpretability analyses also exhibit the validity of Tensor-CSPNet for the MI-EEG classification. To conclude, in this study, we provide a feasible answer to the question by generalizing the DL methodologies on SPD manifolds, which indicates the start of a specific GDL methodology for the MI-EEG classification.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3172108</identifier><identifier>PMID: 35749326</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Classification ; Covariance matrices ; Covariance matrix ; Deep learning ; EEG ; Electroencephalography ; Electroencephalography (EEG)-based brain-computer interfaces (BCIs) ; geometric deep learning (DL) ; Human-computer interface ; Image classification ; Machine learning ; Manifolds ; Mathematical analysis ; Mental task performance ; motor imagery (MI) classification ; Motor skill learning ; Neural networks ; Questions ; symmetric positive definite (SPD) manifolds ; Task analysis ; Tensors ; Visual signals ; Visualization</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-12, Vol.34 (12), p.10955-10969</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-f7f09536e7f2b2de02fab7567c8d2c485ce2984c60753091645d137668f7281c3</citedby><cites>FETCH-LOGICAL-c372t-f7f09536e7f2b2de02fab7567c8d2c485ce2984c60753091645d137668f7281c3</cites><orcidid>0000-0002-0753-2179 ; 0000-0002-0872-3276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9805775$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Ju, Ce</creatorcontrib><creatorcontrib>Guan, Cuntai</creatorcontrib><title>Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor Imagery Classification</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><description>Deep learning (DL) has been widely investigated in a vast majority of applications in electroencephalography (EEG)-based brain-computer interfaces (BCIs), especially for motor imagery (MI) classification in the past five years. The mainstream DL methodology for the MI-EEG classification exploits the temporospatial patterns of EEG signals using convolutional neural networks (CNNs), which have been particularly successful in visual images. However, since the statistical characteristics of visual images depart radically from EEG signals, a natural question arises whether an alternative network architecture exists apart from CNNs. To address this question, we propose a novel geometric DL (GDL) framework called Tensor-CSPNet, which characterizes spatial covariance matrices derived from EEG signals on symmetric positive definite (SPD) manifolds and fully captures the temporospatiofrequency patterns using existing deep neural networks on SPD manifolds, integrating with experiences from many successful MI-EEG classifiers to optimize the framework. In the experiments, Tensor-CSPNet attains or slightly outperforms the current state-of-the-art performance on the cross-validation and holdout scenarios in two commonly used MI-EEG datasets. Moreover, the visualization and interpretability analyses also exhibit the validity of Tensor-CSPNet for the MI-EEG classification. To conclude, in this study, we provide a feasible answer to the question by generalizing the DL methodologies on SPD manifolds, which indicates the start of a specific GDL methodology for the MI-EEG classification.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Deep learning</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography (EEG)-based brain-computer interfaces (BCIs)</subject><subject>geometric deep learning (DL)</subject><subject>Human-computer interface</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>Mental task performance</subject><subject>motor imagery (MI) classification</subject><subject>Motor skill learning</subject><subject>Neural networks</subject><subject>Questions</subject><subject>symmetric positive definite (SPD) manifolds</subject><subject>Task analysis</subject><subject>Tensors</subject><subject>Visual signals</subject><subject>Visualization</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkE1PGzEQhq2qqKDAH6AXS1x62WCP1x_LDYWPRgoBiSDByTLOGC3dXQd70yr_nk2DODCHmTk872j0EHLM2ZhzVp0u5vPZ_RgYwFhwDZyZb-QAuIIChDHfP3f9uE-Ocn5lQykmVVn9IPtC6rISoA7I0wK7HFMxub-bY39Gz-k8_sWGXmNssU-1pxeIKzpDl7q6e6FXybX4L6Y_NMREb2I_9GnrXjBt6KRxOdeh9q6vY3dI9oJrMh59zBF5uLpcTH4Xs9vr6eR8VnihoS-CDqySQqEO8AxLZBDcs5ZKe7MEXxrpESpTesW0FKziqpRLLrRSJmgw3IsR-bW7u0rxbY25t22dPTaN6zCuswVlOCuV1mJAT76gr3GduuE7C6aSxnBtyoGCHeVTzDlhsKtUty5tLGd2697-d2-37u2H-yH0cxeqEfEzUBkm9fD3O_Q7e_w</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Ju, Ce</creator><creator>Guan, Cuntai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0753-2179</orcidid><orcidid>https://orcid.org/0000-0002-0872-3276</orcidid></search><sort><creationdate>20231201</creationdate><title>Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor Imagery Classification</title><author>Ju, Ce ; Guan, Cuntai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-f7f09536e7f2b2de02fab7567c8d2c485ce2984c60753091645d137668f7281c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Deep learning</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography (EEG)-based brain-computer interfaces (BCIs)</topic><topic>geometric deep learning (DL)</topic><topic>Human-computer interface</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>Mental task performance</topic><topic>motor imagery (MI) classification</topic><topic>Motor skill learning</topic><topic>Neural networks</topic><topic>Questions</topic><topic>symmetric positive definite (SPD) manifolds</topic><topic>Task analysis</topic><topic>Tensors</topic><topic>Visual signals</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Ju, Ce</creatorcontrib><creatorcontrib>Guan, Cuntai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ju, Ce</au><au>Guan, Cuntai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor Imagery Classification</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>34</volume><issue>12</issue><spage>10955</spage><epage>10969</epage><pages>10955-10969</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Deep learning (DL) has been widely investigated in a vast majority of applications in electroencephalography (EEG)-based brain-computer interfaces (BCIs), especially for motor imagery (MI) classification in the past five years. The mainstream DL methodology for the MI-EEG classification exploits the temporospatial patterns of EEG signals using convolutional neural networks (CNNs), which have been particularly successful in visual images. However, since the statistical characteristics of visual images depart radically from EEG signals, a natural question arises whether an alternative network architecture exists apart from CNNs. To address this question, we propose a novel geometric DL (GDL) framework called Tensor-CSPNet, which characterizes spatial covariance matrices derived from EEG signals on symmetric positive definite (SPD) manifolds and fully captures the temporospatiofrequency patterns using existing deep neural networks on SPD manifolds, integrating with experiences from many successful MI-EEG classifiers to optimize the framework. In the experiments, Tensor-CSPNet attains or slightly outperforms the current state-of-the-art performance on the cross-validation and holdout scenarios in two commonly used MI-EEG datasets. Moreover, the visualization and interpretability analyses also exhibit the validity of Tensor-CSPNet for the MI-EEG classification. To conclude, in this study, we provide a feasible answer to the question by generalizing the DL methodologies on SPD manifolds, which indicates the start of a specific GDL methodology for the MI-EEG classification.</abstract><cop>Piscataway</cop><pub>IEEE</pub><pmid>35749326</pmid><doi>10.1109/TNNLS.2022.3172108</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0753-2179</orcidid><orcidid>https://orcid.org/0000-0002-0872-3276</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2023-12, Vol.34 (12), p.10955-10969 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_ieee_primary_9805775 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Classification Covariance matrices Covariance matrix Deep learning EEG Electroencephalography Electroencephalography (EEG)-based brain-computer interfaces (BCIs) geometric deep learning (DL) Human-computer interface Image classification Machine learning Manifolds Mathematical analysis Mental task performance motor imagery (MI) classification Motor skill learning Neural networks Questions symmetric positive definite (SPD) manifolds Task analysis Tensors Visual signals Visualization |
title | Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor Imagery Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor-CSPNet:%20A%20Novel%20Geometric%20Deep%20Learning%20Framework%20for%20Motor%20Imagery%20Classification&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Ju,%20Ce&rft.date=2023-12-01&rft.volume=34&rft.issue=12&rft.spage=10955&rft.epage=10969&rft.pages=10955-10969&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3172108&rft_dat=%3Cproquest_ieee_%3E2895881784%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895881784&rft_id=info:pmid/35749326&rft_ieee_id=9805775&rfr_iscdi=true |