Transient Stability of Low-Inertia Power Systems With Inverter-Based Generation
This study examines the transient stability of low-inertia power systems with inverter-based generation (IBG) and proposes a sufficient stability criterion. In low-inertia grids, transient interactions are induced between the electromagnetic dynamics of the IBG and the electromechanical dynamics of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on energy conversion 2022-12, Vol.37 (4), p.2903-2912 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2912 |
---|---|
container_issue | 4 |
container_start_page | 2903 |
container_title | IEEE transactions on energy conversion |
container_volume | 37 |
creator | He, Changjun He, Xiuqiang Geng, Hua Sun, Huadong Xu, Shiyun |
description | This study examines the transient stability of low-inertia power systems with inverter-based generation (IBG) and proposes a sufficient stability criterion. In low-inertia grids, transient interactions are induced between the electromagnetic dynamics of the IBG and the electromechanical dynamics of the synchronous generator (SG) under a fault. For this, a hybrid IBG-SG system is established and a delta-power-frequency model is developed. Based on this model, new mechanisms of transient instability different from those of conventional power systems from the energy perspective are discovered. First, two loss-of-synchronization (LOS) types are identified based on the relative power imbalance owing to the mismatch between the inertia of the IBG and SG under a fault. Second, the relative angle and frequency will jump at the moment of a fault, thus affecting the system energy. Third, the cosine damping coefficient induces a positive energy dissipation, thereby contributing to the system stability. A unified criterion for identifying the two LOS types is proposed using the energy function method. This criterion is proved to be a sufficient stability condition for addressing the effects of the jumps and cosine damping coefficient on the system stability. The new mechanisms and effectiveness of the criterion are verified based on simulation results. |
doi_str_mv | 10.1109/TEC.2022.3185623 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9804725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9804725</ieee_id><sourcerecordid>2747609944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-c2f556382bf0b8335824d304aa32ec311d59925dc2c2d55d304717b22ab4faeb3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvAc2oy2ewmRy1aC4UKrXgM2d1ZTGl3a5Ja-u_d0uJpDt_7ZoZHyL3gIyG4eVq-jkfAAUZSaJWDvCADoZRmnCtzSQZca8W0yc01uYlxxbnIFIgBmS-Da6PHNtFFcqVf-3SgXUNn3Z5NWwzJO_rR7THQxSEm3ET65dM3nba_fYaBvbiINZ1gj7rku_aWXDVuHfHuPIfk8-11OX5ns_lkOn6esUpKnVgFjVK51FA2vNRSKg1ZLXnmnASspBC1MgZUXUEFtVLHqBBFCeDKrHFYyiF5PO3dhu5nhzHZVbcLbX_SQpEVOTcmy3qKn6gqdDEGbOw2-I0LByu4PWqzvTZ71GbP2vrKw6niEfEfN7p_AJT8A4mUaB4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747609944</pqid></control><display><type>article</type><title>Transient Stability of Low-Inertia Power Systems With Inverter-Based Generation</title><source>IEEE Electronic Library (IEL)</source><creator>He, Changjun ; He, Xiuqiang ; Geng, Hua ; Sun, Huadong ; Xu, Shiyun</creator><creatorcontrib>He, Changjun ; He, Xiuqiang ; Geng, Hua ; Sun, Huadong ; Xu, Shiyun</creatorcontrib><description>This study examines the transient stability of low-inertia power systems with inverter-based generation (IBG) and proposes a sufficient stability criterion. In low-inertia grids, transient interactions are induced between the electromagnetic dynamics of the IBG and the electromechanical dynamics of the synchronous generator (SG) under a fault. For this, a hybrid IBG-SG system is established and a delta-power-frequency model is developed. Based on this model, new mechanisms of transient instability different from those of conventional power systems from the energy perspective are discovered. First, two loss-of-synchronization (LOS) types are identified based on the relative power imbalance owing to the mismatch between the inertia of the IBG and SG under a fault. Second, the relative angle and frequency will jump at the moment of a fault, thus affecting the system energy. Third, the cosine damping coefficient induces a positive energy dissipation, thereby contributing to the system stability. A unified criterion for identifying the two LOS types is proposed using the energy function method. This criterion is proved to be a sufficient stability condition for addressing the effects of the jumps and cosine damping coefficient on the system stability. The new mechanisms and effectiveness of the criterion are verified based on simulation results.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2022.3185623</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Damping ; Energy dissipation ; Energy function ; Hybrid systems ; Inertia ; Inverters ; loss of synchronization ; low-inertia power systems ; Mathematical models ; Phase locked loops ; phase-locked loop ; Power system dynamics ; Power system stability ; Stability criteria ; stability criterion ; Synchronism ; Synchronous machines ; Systems stability ; Transient analysis ; Transient stability</subject><ispartof>IEEE transactions on energy conversion, 2022-12, Vol.37 (4), p.2903-2912</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-c2f556382bf0b8335824d304aa32ec311d59925dc2c2d55d304717b22ab4faeb3</citedby><cites>FETCH-LOGICAL-c338t-c2f556382bf0b8335824d304aa32ec311d59925dc2c2d55d304717b22ab4faeb3</cites><orcidid>0000-0002-3755-7553 ; 0000-0003-4415-8793 ; 0000-0002-8336-6731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9804725$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9804725$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Changjun</creatorcontrib><creatorcontrib>He, Xiuqiang</creatorcontrib><creatorcontrib>Geng, Hua</creatorcontrib><creatorcontrib>Sun, Huadong</creatorcontrib><creatorcontrib>Xu, Shiyun</creatorcontrib><title>Transient Stability of Low-Inertia Power Systems With Inverter-Based Generation</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>This study examines the transient stability of low-inertia power systems with inverter-based generation (IBG) and proposes a sufficient stability criterion. In low-inertia grids, transient interactions are induced between the electromagnetic dynamics of the IBG and the electromechanical dynamics of the synchronous generator (SG) under a fault. For this, a hybrid IBG-SG system is established and a delta-power-frequency model is developed. Based on this model, new mechanisms of transient instability different from those of conventional power systems from the energy perspective are discovered. First, two loss-of-synchronization (LOS) types are identified based on the relative power imbalance owing to the mismatch between the inertia of the IBG and SG under a fault. Second, the relative angle and frequency will jump at the moment of a fault, thus affecting the system energy. Third, the cosine damping coefficient induces a positive energy dissipation, thereby contributing to the system stability. A unified criterion for identifying the two LOS types is proposed using the energy function method. This criterion is proved to be a sufficient stability condition for addressing the effects of the jumps and cosine damping coefficient on the system stability. The new mechanisms and effectiveness of the criterion are verified based on simulation results.</description><subject>Damping</subject><subject>Energy dissipation</subject><subject>Energy function</subject><subject>Hybrid systems</subject><subject>Inertia</subject><subject>Inverters</subject><subject>loss of synchronization</subject><subject>low-inertia power systems</subject><subject>Mathematical models</subject><subject>Phase locked loops</subject><subject>phase-locked loop</subject><subject>Power system dynamics</subject><subject>Power system stability</subject><subject>Stability criteria</subject><subject>stability criterion</subject><subject>Synchronism</subject><subject>Synchronous machines</subject><subject>Systems stability</subject><subject>Transient analysis</subject><subject>Transient stability</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvAc2oy2ewmRy1aC4UKrXgM2d1ZTGl3a5Ja-u_d0uJpDt_7ZoZHyL3gIyG4eVq-jkfAAUZSaJWDvCADoZRmnCtzSQZca8W0yc01uYlxxbnIFIgBmS-Da6PHNtFFcqVf-3SgXUNn3Z5NWwzJO_rR7THQxSEm3ET65dM3nba_fYaBvbiINZ1gj7rku_aWXDVuHfHuPIfk8-11OX5ns_lkOn6esUpKnVgFjVK51FA2vNRSKg1ZLXnmnASspBC1MgZUXUEFtVLHqBBFCeDKrHFYyiF5PO3dhu5nhzHZVbcLbX_SQpEVOTcmy3qKn6gqdDEGbOw2-I0LByu4PWqzvTZ71GbP2vrKw6niEfEfN7p_AJT8A4mUaB4</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>He, Changjun</creator><creator>He, Xiuqiang</creator><creator>Geng, Hua</creator><creator>Sun, Huadong</creator><creator>Xu, Shiyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3755-7553</orcidid><orcidid>https://orcid.org/0000-0003-4415-8793</orcidid><orcidid>https://orcid.org/0000-0002-8336-6731</orcidid></search><sort><creationdate>202212</creationdate><title>Transient Stability of Low-Inertia Power Systems With Inverter-Based Generation</title><author>He, Changjun ; He, Xiuqiang ; Geng, Hua ; Sun, Huadong ; Xu, Shiyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-c2f556382bf0b8335824d304aa32ec311d59925dc2c2d55d304717b22ab4faeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Damping</topic><topic>Energy dissipation</topic><topic>Energy function</topic><topic>Hybrid systems</topic><topic>Inertia</topic><topic>Inverters</topic><topic>loss of synchronization</topic><topic>low-inertia power systems</topic><topic>Mathematical models</topic><topic>Phase locked loops</topic><topic>phase-locked loop</topic><topic>Power system dynamics</topic><topic>Power system stability</topic><topic>Stability criteria</topic><topic>stability criterion</topic><topic>Synchronism</topic><topic>Synchronous machines</topic><topic>Systems stability</topic><topic>Transient analysis</topic><topic>Transient stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Changjun</creatorcontrib><creatorcontrib>He, Xiuqiang</creatorcontrib><creatorcontrib>Geng, Hua</creatorcontrib><creatorcontrib>Sun, Huadong</creatorcontrib><creatorcontrib>Xu, Shiyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Changjun</au><au>He, Xiuqiang</au><au>Geng, Hua</au><au>Sun, Huadong</au><au>Xu, Shiyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient Stability of Low-Inertia Power Systems With Inverter-Based Generation</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2022-12</date><risdate>2022</risdate><volume>37</volume><issue>4</issue><spage>2903</spage><epage>2912</epage><pages>2903-2912</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>This study examines the transient stability of low-inertia power systems with inverter-based generation (IBG) and proposes a sufficient stability criterion. In low-inertia grids, transient interactions are induced between the electromagnetic dynamics of the IBG and the electromechanical dynamics of the synchronous generator (SG) under a fault. For this, a hybrid IBG-SG system is established and a delta-power-frequency model is developed. Based on this model, new mechanisms of transient instability different from those of conventional power systems from the energy perspective are discovered. First, two loss-of-synchronization (LOS) types are identified based on the relative power imbalance owing to the mismatch between the inertia of the IBG and SG under a fault. Second, the relative angle and frequency will jump at the moment of a fault, thus affecting the system energy. Third, the cosine damping coefficient induces a positive energy dissipation, thereby contributing to the system stability. A unified criterion for identifying the two LOS types is proposed using the energy function method. This criterion is proved to be a sufficient stability condition for addressing the effects of the jumps and cosine damping coefficient on the system stability. The new mechanisms and effectiveness of the criterion are verified based on simulation results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2022.3185623</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3755-7553</orcidid><orcidid>https://orcid.org/0000-0003-4415-8793</orcidid><orcidid>https://orcid.org/0000-0002-8336-6731</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8969 |
ispartof | IEEE transactions on energy conversion, 2022-12, Vol.37 (4), p.2903-2912 |
issn | 0885-8969 1558-0059 |
language | eng |
recordid | cdi_ieee_primary_9804725 |
source | IEEE Electronic Library (IEL) |
subjects | Damping Energy dissipation Energy function Hybrid systems Inertia Inverters loss of synchronization low-inertia power systems Mathematical models Phase locked loops phase-locked loop Power system dynamics Power system stability Stability criteria stability criterion Synchronism Synchronous machines Systems stability Transient analysis Transient stability |
title | Transient Stability of Low-Inertia Power Systems With Inverter-Based Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20Stability%20of%20Low-Inertia%20Power%20Systems%20With%20Inverter-Based%20Generation&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=He,%20Changjun&rft.date=2022-12&rft.volume=37&rft.issue=4&rft.spage=2903&rft.epage=2912&rft.pages=2903-2912&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2022.3185623&rft_dat=%3Cproquest_RIE%3E2747609944%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747609944&rft_id=info:pmid/&rft_ieee_id=9804725&rfr_iscdi=true |