Transient Stability of Low-Inertia Power Systems With Inverter-Based Generation

This study examines the transient stability of low-inertia power systems with inverter-based generation (IBG) and proposes a sufficient stability criterion. In low-inertia grids, transient interactions are induced between the electromagnetic dynamics of the IBG and the electromechanical dynamics of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on energy conversion 2022-12, Vol.37 (4), p.2903-2912
Hauptverfasser: He, Changjun, He, Xiuqiang, Geng, Hua, Sun, Huadong, Xu, Shiyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2912
container_issue 4
container_start_page 2903
container_title IEEE transactions on energy conversion
container_volume 37
creator He, Changjun
He, Xiuqiang
Geng, Hua
Sun, Huadong
Xu, Shiyun
description This study examines the transient stability of low-inertia power systems with inverter-based generation (IBG) and proposes a sufficient stability criterion. In low-inertia grids, transient interactions are induced between the electromagnetic dynamics of the IBG and the electromechanical dynamics of the synchronous generator (SG) under a fault. For this, a hybrid IBG-SG system is established and a delta-power-frequency model is developed. Based on this model, new mechanisms of transient instability different from those of conventional power systems from the energy perspective are discovered. First, two loss-of-synchronization (LOS) types are identified based on the relative power imbalance owing to the mismatch between the inertia of the IBG and SG under a fault. Second, the relative angle and frequency will jump at the moment of a fault, thus affecting the system energy. Third, the cosine damping coefficient induces a positive energy dissipation, thereby contributing to the system stability. A unified criterion for identifying the two LOS types is proposed using the energy function method. This criterion is proved to be a sufficient stability condition for addressing the effects of the jumps and cosine damping coefficient on the system stability. The new mechanisms and effectiveness of the criterion are verified based on simulation results.
doi_str_mv 10.1109/TEC.2022.3185623
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9804725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9804725</ieee_id><sourcerecordid>2747609944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-c2f556382bf0b8335824d304aa32ec311d59925dc2c2d55d304717b22ab4faeb3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvAc2oy2ewmRy1aC4UKrXgM2d1ZTGl3a5Ja-u_d0uJpDt_7ZoZHyL3gIyG4eVq-jkfAAUZSaJWDvCADoZRmnCtzSQZca8W0yc01uYlxxbnIFIgBmS-Da6PHNtFFcqVf-3SgXUNn3Z5NWwzJO_rR7THQxSEm3ET65dM3nba_fYaBvbiINZ1gj7rku_aWXDVuHfHuPIfk8-11OX5ns_lkOn6esUpKnVgFjVK51FA2vNRSKg1ZLXnmnASspBC1MgZUXUEFtVLHqBBFCeDKrHFYyiF5PO3dhu5nhzHZVbcLbX_SQpEVOTcmy3qKn6gqdDEGbOw2-I0LByu4PWqzvTZ71GbP2vrKw6niEfEfN7p_AJT8A4mUaB4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747609944</pqid></control><display><type>article</type><title>Transient Stability of Low-Inertia Power Systems With Inverter-Based Generation</title><source>IEEE Electronic Library (IEL)</source><creator>He, Changjun ; He, Xiuqiang ; Geng, Hua ; Sun, Huadong ; Xu, Shiyun</creator><creatorcontrib>He, Changjun ; He, Xiuqiang ; Geng, Hua ; Sun, Huadong ; Xu, Shiyun</creatorcontrib><description>This study examines the transient stability of low-inertia power systems with inverter-based generation (IBG) and proposes a sufficient stability criterion. In low-inertia grids, transient interactions are induced between the electromagnetic dynamics of the IBG and the electromechanical dynamics of the synchronous generator (SG) under a fault. For this, a hybrid IBG-SG system is established and a delta-power-frequency model is developed. Based on this model, new mechanisms of transient instability different from those of conventional power systems from the energy perspective are discovered. First, two loss-of-synchronization (LOS) types are identified based on the relative power imbalance owing to the mismatch between the inertia of the IBG and SG under a fault. Second, the relative angle and frequency will jump at the moment of a fault, thus affecting the system energy. Third, the cosine damping coefficient induces a positive energy dissipation, thereby contributing to the system stability. A unified criterion for identifying the two LOS types is proposed using the energy function method. This criterion is proved to be a sufficient stability condition for addressing the effects of the jumps and cosine damping coefficient on the system stability. The new mechanisms and effectiveness of the criterion are verified based on simulation results.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2022.3185623</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Damping ; Energy dissipation ; Energy function ; Hybrid systems ; Inertia ; Inverters ; loss of synchronization ; low-inertia power systems ; Mathematical models ; Phase locked loops ; phase-locked loop ; Power system dynamics ; Power system stability ; Stability criteria ; stability criterion ; Synchronism ; Synchronous machines ; Systems stability ; Transient analysis ; Transient stability</subject><ispartof>IEEE transactions on energy conversion, 2022-12, Vol.37 (4), p.2903-2912</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-c2f556382bf0b8335824d304aa32ec311d59925dc2c2d55d304717b22ab4faeb3</citedby><cites>FETCH-LOGICAL-c338t-c2f556382bf0b8335824d304aa32ec311d59925dc2c2d55d304717b22ab4faeb3</cites><orcidid>0000-0002-3755-7553 ; 0000-0003-4415-8793 ; 0000-0002-8336-6731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9804725$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9804725$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Changjun</creatorcontrib><creatorcontrib>He, Xiuqiang</creatorcontrib><creatorcontrib>Geng, Hua</creatorcontrib><creatorcontrib>Sun, Huadong</creatorcontrib><creatorcontrib>Xu, Shiyun</creatorcontrib><title>Transient Stability of Low-Inertia Power Systems With Inverter-Based Generation</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>This study examines the transient stability of low-inertia power systems with inverter-based generation (IBG) and proposes a sufficient stability criterion. In low-inertia grids, transient interactions are induced between the electromagnetic dynamics of the IBG and the electromechanical dynamics of the synchronous generator (SG) under a fault. For this, a hybrid IBG-SG system is established and a delta-power-frequency model is developed. Based on this model, new mechanisms of transient instability different from those of conventional power systems from the energy perspective are discovered. First, two loss-of-synchronization (LOS) types are identified based on the relative power imbalance owing to the mismatch between the inertia of the IBG and SG under a fault. Second, the relative angle and frequency will jump at the moment of a fault, thus affecting the system energy. Third, the cosine damping coefficient induces a positive energy dissipation, thereby contributing to the system stability. A unified criterion for identifying the two LOS types is proposed using the energy function method. This criterion is proved to be a sufficient stability condition for addressing the effects of the jumps and cosine damping coefficient on the system stability. The new mechanisms and effectiveness of the criterion are verified based on simulation results.</description><subject>Damping</subject><subject>Energy dissipation</subject><subject>Energy function</subject><subject>Hybrid systems</subject><subject>Inertia</subject><subject>Inverters</subject><subject>loss of synchronization</subject><subject>low-inertia power systems</subject><subject>Mathematical models</subject><subject>Phase locked loops</subject><subject>phase-locked loop</subject><subject>Power system dynamics</subject><subject>Power system stability</subject><subject>Stability criteria</subject><subject>stability criterion</subject><subject>Synchronism</subject><subject>Synchronous machines</subject><subject>Systems stability</subject><subject>Transient analysis</subject><subject>Transient stability</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvAc2oy2ewmRy1aC4UKrXgM2d1ZTGl3a5Ja-u_d0uJpDt_7ZoZHyL3gIyG4eVq-jkfAAUZSaJWDvCADoZRmnCtzSQZca8W0yc01uYlxxbnIFIgBmS-Da6PHNtFFcqVf-3SgXUNn3Z5NWwzJO_rR7THQxSEm3ET65dM3nba_fYaBvbiINZ1gj7rku_aWXDVuHfHuPIfk8-11OX5ns_lkOn6esUpKnVgFjVK51FA2vNRSKg1ZLXnmnASspBC1MgZUXUEFtVLHqBBFCeDKrHFYyiF5PO3dhu5nhzHZVbcLbX_SQpEVOTcmy3qKn6gqdDEGbOw2-I0LByu4PWqzvTZ71GbP2vrKw6niEfEfN7p_AJT8A4mUaB4</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>He, Changjun</creator><creator>He, Xiuqiang</creator><creator>Geng, Hua</creator><creator>Sun, Huadong</creator><creator>Xu, Shiyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3755-7553</orcidid><orcidid>https://orcid.org/0000-0003-4415-8793</orcidid><orcidid>https://orcid.org/0000-0002-8336-6731</orcidid></search><sort><creationdate>202212</creationdate><title>Transient Stability of Low-Inertia Power Systems With Inverter-Based Generation</title><author>He, Changjun ; He, Xiuqiang ; Geng, Hua ; Sun, Huadong ; Xu, Shiyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-c2f556382bf0b8335824d304aa32ec311d59925dc2c2d55d304717b22ab4faeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Damping</topic><topic>Energy dissipation</topic><topic>Energy function</topic><topic>Hybrid systems</topic><topic>Inertia</topic><topic>Inverters</topic><topic>loss of synchronization</topic><topic>low-inertia power systems</topic><topic>Mathematical models</topic><topic>Phase locked loops</topic><topic>phase-locked loop</topic><topic>Power system dynamics</topic><topic>Power system stability</topic><topic>Stability criteria</topic><topic>stability criterion</topic><topic>Synchronism</topic><topic>Synchronous machines</topic><topic>Systems stability</topic><topic>Transient analysis</topic><topic>Transient stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Changjun</creatorcontrib><creatorcontrib>He, Xiuqiang</creatorcontrib><creatorcontrib>Geng, Hua</creatorcontrib><creatorcontrib>Sun, Huadong</creatorcontrib><creatorcontrib>Xu, Shiyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Changjun</au><au>He, Xiuqiang</au><au>Geng, Hua</au><au>Sun, Huadong</au><au>Xu, Shiyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient Stability of Low-Inertia Power Systems With Inverter-Based Generation</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2022-12</date><risdate>2022</risdate><volume>37</volume><issue>4</issue><spage>2903</spage><epage>2912</epage><pages>2903-2912</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>This study examines the transient stability of low-inertia power systems with inverter-based generation (IBG) and proposes a sufficient stability criterion. In low-inertia grids, transient interactions are induced between the electromagnetic dynamics of the IBG and the electromechanical dynamics of the synchronous generator (SG) under a fault. For this, a hybrid IBG-SG system is established and a delta-power-frequency model is developed. Based on this model, new mechanisms of transient instability different from those of conventional power systems from the energy perspective are discovered. First, two loss-of-synchronization (LOS) types are identified based on the relative power imbalance owing to the mismatch between the inertia of the IBG and SG under a fault. Second, the relative angle and frequency will jump at the moment of a fault, thus affecting the system energy. Third, the cosine damping coefficient induces a positive energy dissipation, thereby contributing to the system stability. A unified criterion for identifying the two LOS types is proposed using the energy function method. This criterion is proved to be a sufficient stability condition for addressing the effects of the jumps and cosine damping coefficient on the system stability. The new mechanisms and effectiveness of the criterion are verified based on simulation results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2022.3185623</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3755-7553</orcidid><orcidid>https://orcid.org/0000-0003-4415-8793</orcidid><orcidid>https://orcid.org/0000-0002-8336-6731</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8969
ispartof IEEE transactions on energy conversion, 2022-12, Vol.37 (4), p.2903-2912
issn 0885-8969
1558-0059
language eng
recordid cdi_ieee_primary_9804725
source IEEE Electronic Library (IEL)
subjects Damping
Energy dissipation
Energy function
Hybrid systems
Inertia
Inverters
loss of synchronization
low-inertia power systems
Mathematical models
Phase locked loops
phase-locked loop
Power system dynamics
Power system stability
Stability criteria
stability criterion
Synchronism
Synchronous machines
Systems stability
Transient analysis
Transient stability
title Transient Stability of Low-Inertia Power Systems With Inverter-Based Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20Stability%20of%20Low-Inertia%20Power%20Systems%20With%20Inverter-Based%20Generation&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=He,%20Changjun&rft.date=2022-12&rft.volume=37&rft.issue=4&rft.spage=2903&rft.epage=2912&rft.pages=2903-2912&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2022.3185623&rft_dat=%3Cproquest_RIE%3E2747609944%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747609944&rft_id=info:pmid/&rft_ieee_id=9804725&rfr_iscdi=true