Sliced Sparse Gradient Induced Multi-View Subspace Clustering via Tensorial Arctangent Rank Minimization
Multi-view clustering method tries to improve the performance of clustering by using the information existing in different views. The tensorial representation is more suitable to capture the high order correlations across different views while keep local geometrical structure in specific view. In th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2023-07, Vol.35 (7), p.7483-7496 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7496 |
---|---|
container_issue | 7 |
container_start_page | 7483 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 35 |
creator | Sun, Xiaoli Zhu, Rui Yang, Ming Zhang, Xiujun Tang, Yuanyan |
description | Multi-view clustering method tries to improve the performance of clustering by using the information existing in different views. The tensorial representation is more suitable to capture the high order correlations across different views while keep local geometrical structure in specific view. In this paper, we propose a sliced sparse gradient induced multi-view subspace clustering method via tensorial arctangent rank minimization, named SSG-TAR method. First, a tensorial arctangent rank (TAR) is defined, which is a tighter surrogate of the tensor rank and more effective to explore the consistency among multiple views. Second, a sliced sparse gradient regularization (SSG) is first proposed to enhance the discrimination between clusters and better capture the complementary information in view-specific feature space. Finally, we unify these two terms together and establish an efficient algorithm to optimize the proposed model. Furthermore, the constructed sequence was proved to converge to the stationary KKT point. We have carried out extensive experiments on ten datasets across different types and sizes to verify the performance of our model. The experimental results show that our method have achieved the state-of-the-art performance. |
doi_str_mv | 10.1109/TKDE.2022.3185126 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9802675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9802675</ieee_id><sourcerecordid>2823193202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9600852b05d1a8066bac41d103c9de5e2f3b6e4c925bc45f99b0f419d37bb5233</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4soOKcfQHwJ-NyZS5q2eRxzzuGG4KavIUnTmdmlM2kV_fS2bPh0x_H_3R2_KLoGPALA_G79dD8dEUzIiELOgKQn0QAYy2MCHE67HicQJzTJzqOLELYY4zzLYRC9ryqrTYFWe-mDQTMvC2tcg-auaPv5sq0aG79Z841WrQp7qQ2aVG1ojLdug76sRGvjQu2trNDY60a6Tc-_SPeBltbZnf2Vja3dZXRWyiqYq2MdRq8P0_XkMV48z-aT8SLWhNMm5mn3GSMKswJkjtNUSZ1AAZhqXhhmSElVahLNCVM6YSXnCpcJ8IJmSjFC6TC6Pezd-_qzNaER27r1rjspSE4ocNpZ6lJwSGlfh-BNKfbe7qT_EYBFL1T0QkUvVByFdszNgbHGmP88zzFJM0b_AO7Jcfc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823193202</pqid></control><display><type>article</type><title>Sliced Sparse Gradient Induced Multi-View Subspace Clustering via Tensorial Arctangent Rank Minimization</title><source>IEEE Xplore</source><creator>Sun, Xiaoli ; Zhu, Rui ; Yang, Ming ; Zhang, Xiujun ; Tang, Yuanyan</creator><creatorcontrib>Sun, Xiaoli ; Zhu, Rui ; Yang, Ming ; Zhang, Xiujun ; Tang, Yuanyan</creatorcontrib><description>Multi-view clustering method tries to improve the performance of clustering by using the information existing in different views. The tensorial representation is more suitable to capture the high order correlations across different views while keep local geometrical structure in specific view. In this paper, we propose a sliced sparse gradient induced multi-view subspace clustering method via tensorial arctangent rank minimization, named SSG-TAR method. First, a tensorial arctangent rank (TAR) is defined, which is a tighter surrogate of the tensor rank and more effective to explore the consistency among multiple views. Second, a sliced sparse gradient regularization (SSG) is first proposed to enhance the discrimination between clusters and better capture the complementary information in view-specific feature space. Finally, we unify these two terms together and establish an efficient algorithm to optimize the proposed model. Furthermore, the constructed sequence was proved to converge to the stationary KKT point. We have carried out extensive experiments on ten datasets across different types and sizes to verify the performance of our model. The experimental results show that our method have achieved the state-of-the-art performance.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3185126</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Clustering ; Clustering algorithms ; Clustering methods ; Correlation ; Laplace equations ; Minimization ; Multiple view ; Optimization ; Performance enhancement ; Regularization ; sliced sparse gradient ; subspace clustering ; Subspace methods ; Sun ; tensor arctangent rank ; Tensors</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-07, Vol.35 (7), p.7483-7496</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9600852b05d1a8066bac41d103c9de5e2f3b6e4c925bc45f99b0f419d37bb5233</citedby><cites>FETCH-LOGICAL-c293t-9600852b05d1a8066bac41d103c9de5e2f3b6e4c925bc45f99b0f419d37bb5233</cites><orcidid>0000-0003-4070-4304 ; 0000-0003-1810-1566 ; 0000-0002-3462-4343 ; 0000-0001-5746-6109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9802675$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9802675$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Xiaoli</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Zhang, Xiujun</creatorcontrib><creatorcontrib>Tang, Yuanyan</creatorcontrib><title>Sliced Sparse Gradient Induced Multi-View Subspace Clustering via Tensorial Arctangent Rank Minimization</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Multi-view clustering method tries to improve the performance of clustering by using the information existing in different views. The tensorial representation is more suitable to capture the high order correlations across different views while keep local geometrical structure in specific view. In this paper, we propose a sliced sparse gradient induced multi-view subspace clustering method via tensorial arctangent rank minimization, named SSG-TAR method. First, a tensorial arctangent rank (TAR) is defined, which is a tighter surrogate of the tensor rank and more effective to explore the consistency among multiple views. Second, a sliced sparse gradient regularization (SSG) is first proposed to enhance the discrimination between clusters and better capture the complementary information in view-specific feature space. Finally, we unify these two terms together and establish an efficient algorithm to optimize the proposed model. Furthermore, the constructed sequence was proved to converge to the stationary KKT point. We have carried out extensive experiments on ten datasets across different types and sizes to verify the performance of our model. The experimental results show that our method have achieved the state-of-the-art performance.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Correlation</subject><subject>Laplace equations</subject><subject>Minimization</subject><subject>Multiple view</subject><subject>Optimization</subject><subject>Performance enhancement</subject><subject>Regularization</subject><subject>sliced sparse gradient</subject><subject>subspace clustering</subject><subject>Subspace methods</subject><subject>Sun</subject><subject>tensor arctangent rank</subject><subject>Tensors</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAQx4soOKcfQHwJ-NyZS5q2eRxzzuGG4KavIUnTmdmlM2kV_fS2bPh0x_H_3R2_KLoGPALA_G79dD8dEUzIiELOgKQn0QAYy2MCHE67HicQJzTJzqOLELYY4zzLYRC9ryqrTYFWe-mDQTMvC2tcg-auaPv5sq0aG79Z841WrQp7qQ2aVG1ojLdug76sRGvjQu2trNDY60a6Tc-_SPeBltbZnf2Vja3dZXRWyiqYq2MdRq8P0_XkMV48z-aT8SLWhNMm5mn3GSMKswJkjtNUSZ1AAZhqXhhmSElVahLNCVM6YSXnCpcJ8IJmSjFC6TC6Pezd-_qzNaER27r1rjspSE4ocNpZ6lJwSGlfh-BNKfbe7qT_EYBFL1T0QkUvVByFdszNgbHGmP88zzFJM0b_AO7Jcfc</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Sun, Xiaoli</creator><creator>Zhu, Rui</creator><creator>Yang, Ming</creator><creator>Zhang, Xiujun</creator><creator>Tang, Yuanyan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4070-4304</orcidid><orcidid>https://orcid.org/0000-0003-1810-1566</orcidid><orcidid>https://orcid.org/0000-0002-3462-4343</orcidid><orcidid>https://orcid.org/0000-0001-5746-6109</orcidid></search><sort><creationdate>20230701</creationdate><title>Sliced Sparse Gradient Induced Multi-View Subspace Clustering via Tensorial Arctangent Rank Minimization</title><author>Sun, Xiaoli ; Zhu, Rui ; Yang, Ming ; Zhang, Xiujun ; Tang, Yuanyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9600852b05d1a8066bac41d103c9de5e2f3b6e4c925bc45f99b0f419d37bb5233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Correlation</topic><topic>Laplace equations</topic><topic>Minimization</topic><topic>Multiple view</topic><topic>Optimization</topic><topic>Performance enhancement</topic><topic>Regularization</topic><topic>sliced sparse gradient</topic><topic>subspace clustering</topic><topic>Subspace methods</topic><topic>Sun</topic><topic>tensor arctangent rank</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xiaoli</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Zhang, Xiujun</creatorcontrib><creatorcontrib>Tang, Yuanyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Xiaoli</au><au>Zhu, Rui</au><au>Yang, Ming</au><au>Zhang, Xiujun</au><au>Tang, Yuanyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliced Sparse Gradient Induced Multi-View Subspace Clustering via Tensorial Arctangent Rank Minimization</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>35</volume><issue>7</issue><spage>7483</spage><epage>7496</epage><pages>7483-7496</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Multi-view clustering method tries to improve the performance of clustering by using the information existing in different views. The tensorial representation is more suitable to capture the high order correlations across different views while keep local geometrical structure in specific view. In this paper, we propose a sliced sparse gradient induced multi-view subspace clustering method via tensorial arctangent rank minimization, named SSG-TAR method. First, a tensorial arctangent rank (TAR) is defined, which is a tighter surrogate of the tensor rank and more effective to explore the consistency among multiple views. Second, a sliced sparse gradient regularization (SSG) is first proposed to enhance the discrimination between clusters and better capture the complementary information in view-specific feature space. Finally, we unify these two terms together and establish an efficient algorithm to optimize the proposed model. Furthermore, the constructed sequence was proved to converge to the stationary KKT point. We have carried out extensive experiments on ten datasets across different types and sizes to verify the performance of our model. The experimental results show that our method have achieved the state-of-the-art performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3185126</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4070-4304</orcidid><orcidid>https://orcid.org/0000-0003-1810-1566</orcidid><orcidid>https://orcid.org/0000-0002-3462-4343</orcidid><orcidid>https://orcid.org/0000-0001-5746-6109</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2023-07, Vol.35 (7), p.7483-7496 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_ieee_primary_9802675 |
source | IEEE Xplore |
subjects | Algorithms Clustering Clustering algorithms Clustering methods Correlation Laplace equations Minimization Multiple view Optimization Performance enhancement Regularization sliced sparse gradient subspace clustering Subspace methods Sun tensor arctangent rank Tensors |
title | Sliced Sparse Gradient Induced Multi-View Subspace Clustering via Tensorial Arctangent Rank Minimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliced%20Sparse%20Gradient%20Induced%20Multi-View%20Subspace%20Clustering%20via%20Tensorial%20Arctangent%20Rank%20Minimization&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Sun,%20Xiaoli&rft.date=2023-07-01&rft.volume=35&rft.issue=7&rft.spage=7483&rft.epage=7496&rft.pages=7483-7496&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3185126&rft_dat=%3Cproquest_RIE%3E2823193202%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823193202&rft_id=info:pmid/&rft_ieee_id=9802675&rfr_iscdi=true |