Sliced Sparse Gradient Induced Multi-View Subspace Clustering via Tensorial Arctangent Rank Minimization

Multi-view clustering method tries to improve the performance of clustering by using the information existing in different views. The tensorial representation is more suitable to capture the high order correlations across different views while keep local geometrical structure in specific view. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-07, Vol.35 (7), p.7483-7496
Hauptverfasser: Sun, Xiaoli, Zhu, Rui, Yang, Ming, Zhang, Xiujun, Tang, Yuanyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7496
container_issue 7
container_start_page 7483
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Sun, Xiaoli
Zhu, Rui
Yang, Ming
Zhang, Xiujun
Tang, Yuanyan
description Multi-view clustering method tries to improve the performance of clustering by using the information existing in different views. The tensorial representation is more suitable to capture the high order correlations across different views while keep local geometrical structure in specific view. In this paper, we propose a sliced sparse gradient induced multi-view subspace clustering method via tensorial arctangent rank minimization, named SSG-TAR method. First, a tensorial arctangent rank (TAR) is defined, which is a tighter surrogate of the tensor rank and more effective to explore the consistency among multiple views. Second, a sliced sparse gradient regularization (SSG) is first proposed to enhance the discrimination between clusters and better capture the complementary information in view-specific feature space. Finally, we unify these two terms together and establish an efficient algorithm to optimize the proposed model. Furthermore, the constructed sequence was proved to converge to the stationary KKT point. We have carried out extensive experiments on ten datasets across different types and sizes to verify the performance of our model. The experimental results show that our method have achieved the state-of-the-art performance.
doi_str_mv 10.1109/TKDE.2022.3185126
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9802675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9802675</ieee_id><sourcerecordid>2823193202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9600852b05d1a8066bac41d103c9de5e2f3b6e4c925bc45f99b0f419d37bb5233</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4soOKcfQHwJ-NyZS5q2eRxzzuGG4KavIUnTmdmlM2kV_fS2bPh0x_H_3R2_KLoGPALA_G79dD8dEUzIiELOgKQn0QAYy2MCHE67HicQJzTJzqOLELYY4zzLYRC9ryqrTYFWe-mDQTMvC2tcg-auaPv5sq0aG79Z841WrQp7qQ2aVG1ojLdug76sRGvjQu2trNDY60a6Tc-_SPeBltbZnf2Vja3dZXRWyiqYq2MdRq8P0_XkMV48z-aT8SLWhNMm5mn3GSMKswJkjtNUSZ1AAZhqXhhmSElVahLNCVM6YSXnCpcJ8IJmSjFC6TC6Pezd-_qzNaER27r1rjspSE4ocNpZ6lJwSGlfh-BNKfbe7qT_EYBFL1T0QkUvVByFdszNgbHGmP88zzFJM0b_AO7Jcfc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823193202</pqid></control><display><type>article</type><title>Sliced Sparse Gradient Induced Multi-View Subspace Clustering via Tensorial Arctangent Rank Minimization</title><source>IEEE Xplore</source><creator>Sun, Xiaoli ; Zhu, Rui ; Yang, Ming ; Zhang, Xiujun ; Tang, Yuanyan</creator><creatorcontrib>Sun, Xiaoli ; Zhu, Rui ; Yang, Ming ; Zhang, Xiujun ; Tang, Yuanyan</creatorcontrib><description>Multi-view clustering method tries to improve the performance of clustering by using the information existing in different views. The tensorial representation is more suitable to capture the high order correlations across different views while keep local geometrical structure in specific view. In this paper, we propose a sliced sparse gradient induced multi-view subspace clustering method via tensorial arctangent rank minimization, named SSG-TAR method. First, a tensorial arctangent rank (TAR) is defined, which is a tighter surrogate of the tensor rank and more effective to explore the consistency among multiple views. Second, a sliced sparse gradient regularization (SSG) is first proposed to enhance the discrimination between clusters and better capture the complementary information in view-specific feature space. Finally, we unify these two terms together and establish an efficient algorithm to optimize the proposed model. Furthermore, the constructed sequence was proved to converge to the stationary KKT point. We have carried out extensive experiments on ten datasets across different types and sizes to verify the performance of our model. The experimental results show that our method have achieved the state-of-the-art performance.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3185126</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Clustering ; Clustering algorithms ; Clustering methods ; Correlation ; Laplace equations ; Minimization ; Multiple view ; Optimization ; Performance enhancement ; Regularization ; sliced sparse gradient ; subspace clustering ; Subspace methods ; Sun ; tensor arctangent rank ; Tensors</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-07, Vol.35 (7), p.7483-7496</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9600852b05d1a8066bac41d103c9de5e2f3b6e4c925bc45f99b0f419d37bb5233</citedby><cites>FETCH-LOGICAL-c293t-9600852b05d1a8066bac41d103c9de5e2f3b6e4c925bc45f99b0f419d37bb5233</cites><orcidid>0000-0003-4070-4304 ; 0000-0003-1810-1566 ; 0000-0002-3462-4343 ; 0000-0001-5746-6109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9802675$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9802675$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Xiaoli</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Zhang, Xiujun</creatorcontrib><creatorcontrib>Tang, Yuanyan</creatorcontrib><title>Sliced Sparse Gradient Induced Multi-View Subspace Clustering via Tensorial Arctangent Rank Minimization</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Multi-view clustering method tries to improve the performance of clustering by using the information existing in different views. The tensorial representation is more suitable to capture the high order correlations across different views while keep local geometrical structure in specific view. In this paper, we propose a sliced sparse gradient induced multi-view subspace clustering method via tensorial arctangent rank minimization, named SSG-TAR method. First, a tensorial arctangent rank (TAR) is defined, which is a tighter surrogate of the tensor rank and more effective to explore the consistency among multiple views. Second, a sliced sparse gradient regularization (SSG) is first proposed to enhance the discrimination between clusters and better capture the complementary information in view-specific feature space. Finally, we unify these two terms together and establish an efficient algorithm to optimize the proposed model. Furthermore, the constructed sequence was proved to converge to the stationary KKT point. We have carried out extensive experiments on ten datasets across different types and sizes to verify the performance of our model. The experimental results show that our method have achieved the state-of-the-art performance.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Correlation</subject><subject>Laplace equations</subject><subject>Minimization</subject><subject>Multiple view</subject><subject>Optimization</subject><subject>Performance enhancement</subject><subject>Regularization</subject><subject>sliced sparse gradient</subject><subject>subspace clustering</subject><subject>Subspace methods</subject><subject>Sun</subject><subject>tensor arctangent rank</subject><subject>Tensors</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAQx4soOKcfQHwJ-NyZS5q2eRxzzuGG4KavIUnTmdmlM2kV_fS2bPh0x_H_3R2_KLoGPALA_G79dD8dEUzIiELOgKQn0QAYy2MCHE67HicQJzTJzqOLELYY4zzLYRC9ryqrTYFWe-mDQTMvC2tcg-auaPv5sq0aG79Z841WrQp7qQ2aVG1ojLdug76sRGvjQu2trNDY60a6Tc-_SPeBltbZnf2Vja3dZXRWyiqYq2MdRq8P0_XkMV48z-aT8SLWhNMm5mn3GSMKswJkjtNUSZ1AAZhqXhhmSElVahLNCVM6YSXnCpcJ8IJmSjFC6TC6Pezd-_qzNaER27r1rjspSE4ocNpZ6lJwSGlfh-BNKfbe7qT_EYBFL1T0QkUvVByFdszNgbHGmP88zzFJM0b_AO7Jcfc</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Sun, Xiaoli</creator><creator>Zhu, Rui</creator><creator>Yang, Ming</creator><creator>Zhang, Xiujun</creator><creator>Tang, Yuanyan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4070-4304</orcidid><orcidid>https://orcid.org/0000-0003-1810-1566</orcidid><orcidid>https://orcid.org/0000-0002-3462-4343</orcidid><orcidid>https://orcid.org/0000-0001-5746-6109</orcidid></search><sort><creationdate>20230701</creationdate><title>Sliced Sparse Gradient Induced Multi-View Subspace Clustering via Tensorial Arctangent Rank Minimization</title><author>Sun, Xiaoli ; Zhu, Rui ; Yang, Ming ; Zhang, Xiujun ; Tang, Yuanyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9600852b05d1a8066bac41d103c9de5e2f3b6e4c925bc45f99b0f419d37bb5233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Correlation</topic><topic>Laplace equations</topic><topic>Minimization</topic><topic>Multiple view</topic><topic>Optimization</topic><topic>Performance enhancement</topic><topic>Regularization</topic><topic>sliced sparse gradient</topic><topic>subspace clustering</topic><topic>Subspace methods</topic><topic>Sun</topic><topic>tensor arctangent rank</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xiaoli</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Zhang, Xiujun</creatorcontrib><creatorcontrib>Tang, Yuanyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Xiaoli</au><au>Zhu, Rui</au><au>Yang, Ming</au><au>Zhang, Xiujun</au><au>Tang, Yuanyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliced Sparse Gradient Induced Multi-View Subspace Clustering via Tensorial Arctangent Rank Minimization</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>35</volume><issue>7</issue><spage>7483</spage><epage>7496</epage><pages>7483-7496</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Multi-view clustering method tries to improve the performance of clustering by using the information existing in different views. The tensorial representation is more suitable to capture the high order correlations across different views while keep local geometrical structure in specific view. In this paper, we propose a sliced sparse gradient induced multi-view subspace clustering method via tensorial arctangent rank minimization, named SSG-TAR method. First, a tensorial arctangent rank (TAR) is defined, which is a tighter surrogate of the tensor rank and more effective to explore the consistency among multiple views. Second, a sliced sparse gradient regularization (SSG) is first proposed to enhance the discrimination between clusters and better capture the complementary information in view-specific feature space. Finally, we unify these two terms together and establish an efficient algorithm to optimize the proposed model. Furthermore, the constructed sequence was proved to converge to the stationary KKT point. We have carried out extensive experiments on ten datasets across different types and sizes to verify the performance of our model. The experimental results show that our method have achieved the state-of-the-art performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3185126</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4070-4304</orcidid><orcidid>https://orcid.org/0000-0003-1810-1566</orcidid><orcidid>https://orcid.org/0000-0002-3462-4343</orcidid><orcidid>https://orcid.org/0000-0001-5746-6109</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-07, Vol.35 (7), p.7483-7496
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_9802675
source IEEE Xplore
subjects Algorithms
Clustering
Clustering algorithms
Clustering methods
Correlation
Laplace equations
Minimization
Multiple view
Optimization
Performance enhancement
Regularization
sliced sparse gradient
subspace clustering
Subspace methods
Sun
tensor arctangent rank
Tensors
title Sliced Sparse Gradient Induced Multi-View Subspace Clustering via Tensorial Arctangent Rank Minimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliced%20Sparse%20Gradient%20Induced%20Multi-View%20Subspace%20Clustering%20via%20Tensorial%20Arctangent%20Rank%20Minimization&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Sun,%20Xiaoli&rft.date=2023-07-01&rft.volume=35&rft.issue=7&rft.spage=7483&rft.epage=7496&rft.pages=7483-7496&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3185126&rft_dat=%3Cproquest_RIE%3E2823193202%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823193202&rft_id=info:pmid/&rft_ieee_id=9802675&rfr_iscdi=true