Model Order Diminution of Discrete Interval Systems Using Kharitonov Polynomials
In this research proposal, diminution of higher order (HO) discrete interval system (DIS) is accomplished by utilizing Kharitonov polynomials. The DIS is firstly, transformed into continuous interval system (CIS). The Markov-parameters (MPs) and time-moments (TMs) are exploited for determination of...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.66722-66733 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66733 |
---|---|
container_issue | |
container_start_page | 66722 |
container_title | IEEE access |
container_volume | 10 |
creator | Meena, V. P. Yadav, U. K. Singh, V. P. Khan, Baseem |
description | In this research proposal, diminution of higher order (HO) discrete interval system (DIS) is accomplished by utilizing Kharitonov polynomials. The DIS is firstly, transformed into continuous interval system (CIS). The Markov-parameters (MPs) and time-moments (TMs) are exploited for determination of approximated models. The ascertainment of model order diminution (MOD) of DISs is done by Routh-Padé approximation. The Routh table is utilized to obtain the denominator of approximated model. The unknown numerator coefficients of desired approximated model are determined by matching MPs and TMs of DISs and desired model. This whole procedure of MOD is elucidated with the help of one test illustration in which third order system is reduced to first order model as well as second order model. To prove applicability of the proposed method, impulse, step and Bode responses are plotted for both system and model. For relative comparison, time-domain specifications of proposed model are tabulated for both upper and lower limits. Further, performance indices are specified for dissimilarities between responses of system and model. The obtained results depict the effectiveness and efficacy for the proposed method. |
doi_str_mv | 10.1109/ACCESS.2022.3184006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9798827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9798827</ieee_id><doaj_id>oai_doaj_org_article_2b3024369b9b4a088adec9992a09eea7</doaj_id><sourcerecordid>2681955287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-46afb92ea742dbd45f74011be5ea24850aa31af5915d3d3d7156567a8a07211d3</originalsourceid><addsrcrecordid>eNpNUU1rwkAQDaWFSusv8BLoWbsf2WT3KNa2UouC9bxMkoldiVm7GwX_fddGpDOH-WDemwcvigaUjCgl6nk8mUxXqxEjjI04lQkh6U3UYzRVQy54evuvv4_63m9JCBlWIutFy09bYh0vXIkufjE70xxaY5vYVmHyhcMW41nTojtCHa9OvsWdj9feNJv44xucaW1jj_HS1qfG7gzU_jG6q0LB_qU-ROvX6dfkfThfvM0m4_mw4Fy2wySFKlcMIUtYmZeJqLKEUJqjQGCJFASAU6iEoqLkITMqUpFmIIFkjNKSP0Szjre0sNV7Z3bgTtqC0X8L6zYaXGuKGjXLOWEJT1Wu8gSIlFBioZRiQBQGBYHrqePaO_tzQN_qrT24JsjXLJVUCcHk-Yp3V4Wz3jusrl8p0WcndOeEPjuhL04E1KBDGUS8IlSmpGQZ_wWAXYP6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681955287</pqid></control><display><type>article</type><title>Model Order Diminution of Discrete Interval Systems Using Kharitonov Polynomials</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Meena, V. P. ; Yadav, U. K. ; Singh, V. P. ; Khan, Baseem</creator><creatorcontrib>Meena, V. P. ; Yadav, U. K. ; Singh, V. P. ; Khan, Baseem</creatorcontrib><description>In this research proposal, diminution of higher order (HO) discrete interval system (DIS) is accomplished by utilizing Kharitonov polynomials. The DIS is firstly, transformed into continuous interval system (CIS). The Markov-parameters (MPs) and time-moments (TMs) are exploited for determination of approximated models. The ascertainment of model order diminution (MOD) of DISs is done by Routh-Padé approximation. The Routh table is utilized to obtain the denominator of approximated model. The unknown numerator coefficients of desired approximated model are determined by matching MPs and TMs of DISs and desired model. This whole procedure of MOD is elucidated with the help of one test illustration in which third order system is reduced to first order model as well as second order model. To prove applicability of the proposed method, impulse, step and Bode responses are plotted for both system and model. For relative comparison, time-domain specifications of proposed model are tabulated for both upper and lower limits. Further, performance indices are specified for dissimilarities between responses of system and model. The obtained results depict the effectiveness and efficacy for the proposed method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3184006</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Discrete interval systems ; Electrical engineering ; interval system ; Mathematical models ; model order diminution ; Pade approximation ; padé-approximation ; Performance indices ; Polynomials ; Power system stability ; Routh approximation ; Stability criteria ; Steady-state ; Thermal stability ; Transfer functions</subject><ispartof>IEEE access, 2022, Vol.10, p.66722-66733</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-46afb92ea742dbd45f74011be5ea24850aa31af5915d3d3d7156567a8a07211d3</citedby><cites>FETCH-LOGICAL-c338t-46afb92ea742dbd45f74011be5ea24850aa31af5915d3d3d7156567a8a07211d3</cites><orcidid>0000-0003-1667-386X ; 0000-0002-5910-9778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9798827$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,4012,27616,27906,27907,27908,54916</link.rule.ids></links><search><creatorcontrib>Meena, V. P.</creatorcontrib><creatorcontrib>Yadav, U. K.</creatorcontrib><creatorcontrib>Singh, V. P.</creatorcontrib><creatorcontrib>Khan, Baseem</creatorcontrib><title>Model Order Diminution of Discrete Interval Systems Using Kharitonov Polynomials</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this research proposal, diminution of higher order (HO) discrete interval system (DIS) is accomplished by utilizing Kharitonov polynomials. The DIS is firstly, transformed into continuous interval system (CIS). The Markov-parameters (MPs) and time-moments (TMs) are exploited for determination of approximated models. The ascertainment of model order diminution (MOD) of DISs is done by Routh-Padé approximation. The Routh table is utilized to obtain the denominator of approximated model. The unknown numerator coefficients of desired approximated model are determined by matching MPs and TMs of DISs and desired model. This whole procedure of MOD is elucidated with the help of one test illustration in which third order system is reduced to first order model as well as second order model. To prove applicability of the proposed method, impulse, step and Bode responses are plotted for both system and model. For relative comparison, time-domain specifications of proposed model are tabulated for both upper and lower limits. Further, performance indices are specified for dissimilarities between responses of system and model. The obtained results depict the effectiveness and efficacy for the proposed method.</description><subject>Discrete interval systems</subject><subject>Electrical engineering</subject><subject>interval system</subject><subject>Mathematical models</subject><subject>model order diminution</subject><subject>Pade approximation</subject><subject>padé-approximation</subject><subject>Performance indices</subject><subject>Polynomials</subject><subject>Power system stability</subject><subject>Routh approximation</subject><subject>Stability criteria</subject><subject>Steady-state</subject><subject>Thermal stability</subject><subject>Transfer functions</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwkAQDaWFSusv8BLoWbsf2WT3KNa2UouC9bxMkoldiVm7GwX_fddGpDOH-WDemwcvigaUjCgl6nk8mUxXqxEjjI04lQkh6U3UYzRVQy54evuvv4_63m9JCBlWIutFy09bYh0vXIkufjE70xxaY5vYVmHyhcMW41nTojtCHa9OvsWdj9feNJv44xucaW1jj_HS1qfG7gzU_jG6q0LB_qU-ROvX6dfkfThfvM0m4_mw4Fy2wySFKlcMIUtYmZeJqLKEUJqjQGCJFASAU6iEoqLkITMqUpFmIIFkjNKSP0Szjre0sNV7Z3bgTtqC0X8L6zYaXGuKGjXLOWEJT1Wu8gSIlFBioZRiQBQGBYHrqePaO_tzQN_qrT24JsjXLJVUCcHk-Yp3V4Wz3jusrl8p0WcndOeEPjuhL04E1KBDGUS8IlSmpGQZ_wWAXYP6</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Meena, V. P.</creator><creator>Yadav, U. K.</creator><creator>Singh, V. P.</creator><creator>Khan, Baseem</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1667-386X</orcidid><orcidid>https://orcid.org/0000-0002-5910-9778</orcidid></search><sort><creationdate>2022</creationdate><title>Model Order Diminution of Discrete Interval Systems Using Kharitonov Polynomials</title><author>Meena, V. P. ; Yadav, U. K. ; Singh, V. P. ; Khan, Baseem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-46afb92ea742dbd45f74011be5ea24850aa31af5915d3d3d7156567a8a07211d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Discrete interval systems</topic><topic>Electrical engineering</topic><topic>interval system</topic><topic>Mathematical models</topic><topic>model order diminution</topic><topic>Pade approximation</topic><topic>padé-approximation</topic><topic>Performance indices</topic><topic>Polynomials</topic><topic>Power system stability</topic><topic>Routh approximation</topic><topic>Stability criteria</topic><topic>Steady-state</topic><topic>Thermal stability</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meena, V. P.</creatorcontrib><creatorcontrib>Yadav, U. K.</creatorcontrib><creatorcontrib>Singh, V. P.</creatorcontrib><creatorcontrib>Khan, Baseem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meena, V. P.</au><au>Yadav, U. K.</au><au>Singh, V. P.</au><au>Khan, Baseem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Order Diminution of Discrete Interval Systems Using Kharitonov Polynomials</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>66722</spage><epage>66733</epage><pages>66722-66733</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this research proposal, diminution of higher order (HO) discrete interval system (DIS) is accomplished by utilizing Kharitonov polynomials. The DIS is firstly, transformed into continuous interval system (CIS). The Markov-parameters (MPs) and time-moments (TMs) are exploited for determination of approximated models. The ascertainment of model order diminution (MOD) of DISs is done by Routh-Padé approximation. The Routh table is utilized to obtain the denominator of approximated model. The unknown numerator coefficients of desired approximated model are determined by matching MPs and TMs of DISs and desired model. This whole procedure of MOD is elucidated with the help of one test illustration in which third order system is reduced to first order model as well as second order model. To prove applicability of the proposed method, impulse, step and Bode responses are plotted for both system and model. For relative comparison, time-domain specifications of proposed model are tabulated for both upper and lower limits. Further, performance indices are specified for dissimilarities between responses of system and model. The obtained results depict the effectiveness and efficacy for the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3184006</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1667-386X</orcidid><orcidid>https://orcid.org/0000-0002-5910-9778</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.66722-66733 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9798827 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Discrete interval systems Electrical engineering interval system Mathematical models model order diminution Pade approximation padé-approximation Performance indices Polynomials Power system stability Routh approximation Stability criteria Steady-state Thermal stability Transfer functions |
title | Model Order Diminution of Discrete Interval Systems Using Kharitonov Polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Order%20Diminution%20of%20Discrete%20Interval%20Systems%20Using%20Kharitonov%20Polynomials&rft.jtitle=IEEE%20access&rft.au=Meena,%20V.%20P.&rft.date=2022&rft.volume=10&rft.spage=66722&rft.epage=66733&rft.pages=66722-66733&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3184006&rft_dat=%3Cproquest_ieee_%3E2681955287%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681955287&rft_id=info:pmid/&rft_ieee_id=9798827&rft_doaj_id=oai_doaj_org_article_2b3024369b9b4a088adec9992a09eea7&rfr_iscdi=true |