Model Order Diminution of Discrete Interval Systems Using Kharitonov Polynomials

In this research proposal, diminution of higher order (HO) discrete interval system (DIS) is accomplished by utilizing Kharitonov polynomials. The DIS is firstly, transformed into continuous interval system (CIS). The Markov-parameters (MPs) and time-moments (TMs) are exploited for determination of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.66722-66733
Hauptverfasser: Meena, V. P., Yadav, U. K., Singh, V. P., Khan, Baseem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66733
container_issue
container_start_page 66722
container_title IEEE access
container_volume 10
creator Meena, V. P.
Yadav, U. K.
Singh, V. P.
Khan, Baseem
description In this research proposal, diminution of higher order (HO) discrete interval system (DIS) is accomplished by utilizing Kharitonov polynomials. The DIS is firstly, transformed into continuous interval system (CIS). The Markov-parameters (MPs) and time-moments (TMs) are exploited for determination of approximated models. The ascertainment of model order diminution (MOD) of DISs is done by Routh-Padé approximation. The Routh table is utilized to obtain the denominator of approximated model. The unknown numerator coefficients of desired approximated model are determined by matching MPs and TMs of DISs and desired model. This whole procedure of MOD is elucidated with the help of one test illustration in which third order system is reduced to first order model as well as second order model. To prove applicability of the proposed method, impulse, step and Bode responses are plotted for both system and model. For relative comparison, time-domain specifications of proposed model are tabulated for both upper and lower limits. Further, performance indices are specified for dissimilarities between responses of system and model. The obtained results depict the effectiveness and efficacy for the proposed method.
doi_str_mv 10.1109/ACCESS.2022.3184006
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9798827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9798827</ieee_id><doaj_id>oai_doaj_org_article_2b3024369b9b4a088adec9992a09eea7</doaj_id><sourcerecordid>2681955287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-46afb92ea742dbd45f74011be5ea24850aa31af5915d3d3d7156567a8a07211d3</originalsourceid><addsrcrecordid>eNpNUU1rwkAQDaWFSusv8BLoWbsf2WT3KNa2UouC9bxMkoldiVm7GwX_fddGpDOH-WDemwcvigaUjCgl6nk8mUxXqxEjjI04lQkh6U3UYzRVQy54evuvv4_63m9JCBlWIutFy09bYh0vXIkufjE70xxaY5vYVmHyhcMW41nTojtCHa9OvsWdj9feNJv44xucaW1jj_HS1qfG7gzU_jG6q0LB_qU-ROvX6dfkfThfvM0m4_mw4Fy2wySFKlcMIUtYmZeJqLKEUJqjQGCJFASAU6iEoqLkITMqUpFmIIFkjNKSP0Szjre0sNV7Z3bgTtqC0X8L6zYaXGuKGjXLOWEJT1Wu8gSIlFBioZRiQBQGBYHrqePaO_tzQN_qrT24JsjXLJVUCcHk-Yp3V4Wz3jusrl8p0WcndOeEPjuhL04E1KBDGUS8IlSmpGQZ_wWAXYP6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681955287</pqid></control><display><type>article</type><title>Model Order Diminution of Discrete Interval Systems Using Kharitonov Polynomials</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Meena, V. P. ; Yadav, U. K. ; Singh, V. P. ; Khan, Baseem</creator><creatorcontrib>Meena, V. P. ; Yadav, U. K. ; Singh, V. P. ; Khan, Baseem</creatorcontrib><description>In this research proposal, diminution of higher order (HO) discrete interval system (DIS) is accomplished by utilizing Kharitonov polynomials. The DIS is firstly, transformed into continuous interval system (CIS). The Markov-parameters (MPs) and time-moments (TMs) are exploited for determination of approximated models. The ascertainment of model order diminution (MOD) of DISs is done by Routh-Padé approximation. The Routh table is utilized to obtain the denominator of approximated model. The unknown numerator coefficients of desired approximated model are determined by matching MPs and TMs of DISs and desired model. This whole procedure of MOD is elucidated with the help of one test illustration in which third order system is reduced to first order model as well as second order model. To prove applicability of the proposed method, impulse, step and Bode responses are plotted for both system and model. For relative comparison, time-domain specifications of proposed model are tabulated for both upper and lower limits. Further, performance indices are specified for dissimilarities between responses of system and model. The obtained results depict the effectiveness and efficacy for the proposed method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3184006</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Discrete interval systems ; Electrical engineering ; interval system ; Mathematical models ; model order diminution ; Pade approximation ; padé-approximation ; Performance indices ; Polynomials ; Power system stability ; Routh approximation ; Stability criteria ; Steady-state ; Thermal stability ; Transfer functions</subject><ispartof>IEEE access, 2022, Vol.10, p.66722-66733</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-46afb92ea742dbd45f74011be5ea24850aa31af5915d3d3d7156567a8a07211d3</citedby><cites>FETCH-LOGICAL-c338t-46afb92ea742dbd45f74011be5ea24850aa31af5915d3d3d7156567a8a07211d3</cites><orcidid>0000-0003-1667-386X ; 0000-0002-5910-9778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9798827$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,4012,27616,27906,27907,27908,54916</link.rule.ids></links><search><creatorcontrib>Meena, V. P.</creatorcontrib><creatorcontrib>Yadav, U. K.</creatorcontrib><creatorcontrib>Singh, V. P.</creatorcontrib><creatorcontrib>Khan, Baseem</creatorcontrib><title>Model Order Diminution of Discrete Interval Systems Using Kharitonov Polynomials</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this research proposal, diminution of higher order (HO) discrete interval system (DIS) is accomplished by utilizing Kharitonov polynomials. The DIS is firstly, transformed into continuous interval system (CIS). The Markov-parameters (MPs) and time-moments (TMs) are exploited for determination of approximated models. The ascertainment of model order diminution (MOD) of DISs is done by Routh-Padé approximation. The Routh table is utilized to obtain the denominator of approximated model. The unknown numerator coefficients of desired approximated model are determined by matching MPs and TMs of DISs and desired model. This whole procedure of MOD is elucidated with the help of one test illustration in which third order system is reduced to first order model as well as second order model. To prove applicability of the proposed method, impulse, step and Bode responses are plotted for both system and model. For relative comparison, time-domain specifications of proposed model are tabulated for both upper and lower limits. Further, performance indices are specified for dissimilarities between responses of system and model. The obtained results depict the effectiveness and efficacy for the proposed method.</description><subject>Discrete interval systems</subject><subject>Electrical engineering</subject><subject>interval system</subject><subject>Mathematical models</subject><subject>model order diminution</subject><subject>Pade approximation</subject><subject>padé-approximation</subject><subject>Performance indices</subject><subject>Polynomials</subject><subject>Power system stability</subject><subject>Routh approximation</subject><subject>Stability criteria</subject><subject>Steady-state</subject><subject>Thermal stability</subject><subject>Transfer functions</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwkAQDaWFSusv8BLoWbsf2WT3KNa2UouC9bxMkoldiVm7GwX_fddGpDOH-WDemwcvigaUjCgl6nk8mUxXqxEjjI04lQkh6U3UYzRVQy54evuvv4_63m9JCBlWIutFy09bYh0vXIkufjE70xxaY5vYVmHyhcMW41nTojtCHa9OvsWdj9feNJv44xucaW1jj_HS1qfG7gzU_jG6q0LB_qU-ROvX6dfkfThfvM0m4_mw4Fy2wySFKlcMIUtYmZeJqLKEUJqjQGCJFASAU6iEoqLkITMqUpFmIIFkjNKSP0Szjre0sNV7Z3bgTtqC0X8L6zYaXGuKGjXLOWEJT1Wu8gSIlFBioZRiQBQGBYHrqePaO_tzQN_qrT24JsjXLJVUCcHk-Yp3V4Wz3jusrl8p0WcndOeEPjuhL04E1KBDGUS8IlSmpGQZ_wWAXYP6</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Meena, V. P.</creator><creator>Yadav, U. K.</creator><creator>Singh, V. P.</creator><creator>Khan, Baseem</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1667-386X</orcidid><orcidid>https://orcid.org/0000-0002-5910-9778</orcidid></search><sort><creationdate>2022</creationdate><title>Model Order Diminution of Discrete Interval Systems Using Kharitonov Polynomials</title><author>Meena, V. P. ; Yadav, U. K. ; Singh, V. P. ; Khan, Baseem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-46afb92ea742dbd45f74011be5ea24850aa31af5915d3d3d7156567a8a07211d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Discrete interval systems</topic><topic>Electrical engineering</topic><topic>interval system</topic><topic>Mathematical models</topic><topic>model order diminution</topic><topic>Pade approximation</topic><topic>padé-approximation</topic><topic>Performance indices</topic><topic>Polynomials</topic><topic>Power system stability</topic><topic>Routh approximation</topic><topic>Stability criteria</topic><topic>Steady-state</topic><topic>Thermal stability</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meena, V. P.</creatorcontrib><creatorcontrib>Yadav, U. K.</creatorcontrib><creatorcontrib>Singh, V. P.</creatorcontrib><creatorcontrib>Khan, Baseem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meena, V. P.</au><au>Yadav, U. K.</au><au>Singh, V. P.</au><au>Khan, Baseem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Order Diminution of Discrete Interval Systems Using Kharitonov Polynomials</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>66722</spage><epage>66733</epage><pages>66722-66733</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this research proposal, diminution of higher order (HO) discrete interval system (DIS) is accomplished by utilizing Kharitonov polynomials. The DIS is firstly, transformed into continuous interval system (CIS). The Markov-parameters (MPs) and time-moments (TMs) are exploited for determination of approximated models. The ascertainment of model order diminution (MOD) of DISs is done by Routh-Padé approximation. The Routh table is utilized to obtain the denominator of approximated model. The unknown numerator coefficients of desired approximated model are determined by matching MPs and TMs of DISs and desired model. This whole procedure of MOD is elucidated with the help of one test illustration in which third order system is reduced to first order model as well as second order model. To prove applicability of the proposed method, impulse, step and Bode responses are plotted for both system and model. For relative comparison, time-domain specifications of proposed model are tabulated for both upper and lower limits. Further, performance indices are specified for dissimilarities between responses of system and model. The obtained results depict the effectiveness and efficacy for the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3184006</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1667-386X</orcidid><orcidid>https://orcid.org/0000-0002-5910-9778</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.66722-66733
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9798827
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Discrete interval systems
Electrical engineering
interval system
Mathematical models
model order diminution
Pade approximation
padé-approximation
Performance indices
Polynomials
Power system stability
Routh approximation
Stability criteria
Steady-state
Thermal stability
Transfer functions
title Model Order Diminution of Discrete Interval Systems Using Kharitonov Polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Order%20Diminution%20of%20Discrete%20Interval%20Systems%20Using%20Kharitonov%20Polynomials&rft.jtitle=IEEE%20access&rft.au=Meena,%20V.%20P.&rft.date=2022&rft.volume=10&rft.spage=66722&rft.epage=66733&rft.pages=66722-66733&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3184006&rft_dat=%3Cproquest_ieee_%3E2681955287%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681955287&rft_id=info:pmid/&rft_ieee_id=9798827&rft_doaj_id=oai_doaj_org_article_2b3024369b9b4a088adec9992a09eea7&rfr_iscdi=true