Isotope Identification Using Artificial Neural Network Ensembles and Bin-Ratios

Reliable, automatic isotope identification is crucial for improving the performance of radioactivity monitoring, especially in security applications. In this article, a robust identification method based on an ensemble employing artificial neural networks (ANN) was developed and compared with other...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2022-06, Vol.69 (6), p.1194-1202
Hauptverfasser: Zhang, Siru, Marsden, Edward, Goulermas, John Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1202
container_issue 6
container_start_page 1194
container_title IEEE transactions on nuclear science
container_volume 69
creator Zhang, Siru
Marsden, Edward
Goulermas, John Y.
description Reliable, automatic isotope identification is crucial for improving the performance of radioactivity monitoring, especially in security applications. In this article, a robust identification method based on an ensemble employing artificial neural networks (ANN) was developed and compared with other popular machine learning methods. We have encoded the histogram features using bin-ratio vectors that increase the classification accuracy. To make experimentation more objective, our datasets are generated from real isotope spectra of Cs 2 LiLaBr 6 (Ce) (CLLBC) detectors using realistic background and gain shift noise profiles, based on the requirements of American National Standards Institute (ANSI) N42.34. In addition to experimenting with classifying individual isotopes we also evaluate the detection of isotope mixtures, where the proposed method also performs competitively.
doi_str_mv 10.1109/TNS.2022.3176586
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9798782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9798782</ieee_id><sourcerecordid>2677852983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fd45c29bd1498f9df9f05d90602e90558196db9f3b0977d27caa29f50f884a413</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA865JdrPJHGupWigtaHsO2U0iqe2mJlvE_97tB57ezPDezPBD6J6SnFICT8v5R84IY3lBRcVldYEGlHOZUS7kJRoQQmUGJcA1uklp3bclJ3yAFtMUurCzeGps23nnG9350OJV8u0nHsXjyOsNntt9PEr3E-IXnrTJbuuNTVi3Bj_7Nns_BNMtunJ6k-zdWYdo9TJZjt-y2eJ1Oh7NsoYB7TJnSt5XtaElSAfGgSPcAKkIs0D6vylUpgZX1ASEMEw0WjNwnDgpS13SYogeT3t3MXzvberUOuxj259UrBJCcgay6F3k5GpiSClap3bRb3X8VZSoAzbVY1MHbOqMrY88nCLeWvtvBwFSSFb8AdnraHE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677852983</pqid></control><display><type>article</type><title>Isotope Identification Using Artificial Neural Network Ensembles and Bin-Ratios</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Siru ; Marsden, Edward ; Goulermas, John Y.</creator><creatorcontrib>Zhang, Siru ; Marsden, Edward ; Goulermas, John Y.</creatorcontrib><description>Reliable, automatic isotope identification is crucial for improving the performance of radioactivity monitoring, especially in security applications. In this article, a robust identification method based on an ensemble employing artificial neural networks (ANN) was developed and compared with other popular machine learning methods. We have encoded the histogram features using bin-ratio vectors that increase the classification accuracy. To make experimentation more objective, our datasets are generated from real isotope spectra of Cs 2 LiLaBr 6 (Ce) (CLLBC) detectors using realistic background and gain shift noise profiles, based on the requirements of American National Standards Institute (ANSI) N42.34. In addition to experimenting with classifying individual isotopes we also evaluate the detection of isotope mixtures, where the proposed method also performs competitively.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2022.3176586</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Background noise ; Bin ratio histogram features ; Classification ; ensemble model ; Experimentation ; Histograms ; Identification methods ; isotope identification ; Isotopes ; Machine learning ; Machine learning algorithms ; Mathematical models ; Neural networks ; Noise standards ; Predictive models ; Radioactivity ; Security ; Support vector machines ; Training</subject><ispartof>IEEE transactions on nuclear science, 2022-06, Vol.69 (6), p.1194-1202</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fd45c29bd1498f9df9f05d90602e90558196db9f3b0977d27caa29f50f884a413</citedby><cites>FETCH-LOGICAL-c291t-fd45c29bd1498f9df9f05d90602e90558196db9f3b0977d27caa29f50f884a413</cites><orcidid>0000-0003-0381-124X ; 0000-0002-4095-6897 ; 0000-0002-9783-5367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9798782$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9798782$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Siru</creatorcontrib><creatorcontrib>Marsden, Edward</creatorcontrib><creatorcontrib>Goulermas, John Y.</creatorcontrib><title>Isotope Identification Using Artificial Neural Network Ensembles and Bin-Ratios</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Reliable, automatic isotope identification is crucial for improving the performance of radioactivity monitoring, especially in security applications. In this article, a robust identification method based on an ensemble employing artificial neural networks (ANN) was developed and compared with other popular machine learning methods. We have encoded the histogram features using bin-ratio vectors that increase the classification accuracy. To make experimentation more objective, our datasets are generated from real isotope spectra of Cs 2 LiLaBr 6 (Ce) (CLLBC) detectors using realistic background and gain shift noise profiles, based on the requirements of American National Standards Institute (ANSI) N42.34. In addition to experimenting with classifying individual isotopes we also evaluate the detection of isotope mixtures, where the proposed method also performs competitively.</description><subject>Artificial neural networks</subject><subject>Background noise</subject><subject>Bin ratio histogram features</subject><subject>Classification</subject><subject>ensemble model</subject><subject>Experimentation</subject><subject>Histograms</subject><subject>Identification methods</subject><subject>isotope identification</subject><subject>Isotopes</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Noise standards</subject><subject>Predictive models</subject><subject>Radioactivity</subject><subject>Security</subject><subject>Support vector machines</subject><subject>Training</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA865JdrPJHGupWigtaHsO2U0iqe2mJlvE_97tB57ezPDezPBD6J6SnFICT8v5R84IY3lBRcVldYEGlHOZUS7kJRoQQmUGJcA1uklp3bclJ3yAFtMUurCzeGps23nnG9350OJV8u0nHsXjyOsNntt9PEr3E-IXnrTJbuuNTVi3Bj_7Nns_BNMtunJ6k-zdWYdo9TJZjt-y2eJ1Oh7NsoYB7TJnSt5XtaElSAfGgSPcAKkIs0D6vylUpgZX1ASEMEw0WjNwnDgpS13SYogeT3t3MXzvberUOuxj259UrBJCcgay6F3k5GpiSClap3bRb3X8VZSoAzbVY1MHbOqMrY88nCLeWvtvBwFSSFb8AdnraHE</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Zhang, Siru</creator><creator>Marsden, Edward</creator><creator>Goulermas, John Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-0381-124X</orcidid><orcidid>https://orcid.org/0000-0002-4095-6897</orcidid><orcidid>https://orcid.org/0000-0002-9783-5367</orcidid></search><sort><creationdate>20220601</creationdate><title>Isotope Identification Using Artificial Neural Network Ensembles and Bin-Ratios</title><author>Zhang, Siru ; Marsden, Edward ; Goulermas, John Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fd45c29bd1498f9df9f05d90602e90558196db9f3b0977d27caa29f50f884a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Background noise</topic><topic>Bin ratio histogram features</topic><topic>Classification</topic><topic>ensemble model</topic><topic>Experimentation</topic><topic>Histograms</topic><topic>Identification methods</topic><topic>isotope identification</topic><topic>Isotopes</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Noise standards</topic><topic>Predictive models</topic><topic>Radioactivity</topic><topic>Security</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Siru</creatorcontrib><creatorcontrib>Marsden, Edward</creatorcontrib><creatorcontrib>Goulermas, John Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Siru</au><au>Marsden, Edward</au><au>Goulermas, John Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isotope Identification Using Artificial Neural Network Ensembles and Bin-Ratios</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>69</volume><issue>6</issue><spage>1194</spage><epage>1202</epage><pages>1194-1202</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Reliable, automatic isotope identification is crucial for improving the performance of radioactivity monitoring, especially in security applications. In this article, a robust identification method based on an ensemble employing artificial neural networks (ANN) was developed and compared with other popular machine learning methods. We have encoded the histogram features using bin-ratio vectors that increase the classification accuracy. To make experimentation more objective, our datasets are generated from real isotope spectra of Cs 2 LiLaBr 6 (Ce) (CLLBC) detectors using realistic background and gain shift noise profiles, based on the requirements of American National Standards Institute (ANSI) N42.34. In addition to experimenting with classifying individual isotopes we also evaluate the detection of isotope mixtures, where the proposed method also performs competitively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2022.3176586</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0381-124X</orcidid><orcidid>https://orcid.org/0000-0002-4095-6897</orcidid><orcidid>https://orcid.org/0000-0002-9783-5367</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2022-06, Vol.69 (6), p.1194-1202
issn 0018-9499
1558-1578
language eng
recordid cdi_ieee_primary_9798782
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Background noise
Bin ratio histogram features
Classification
ensemble model
Experimentation
Histograms
Identification methods
isotope identification
Isotopes
Machine learning
Machine learning algorithms
Mathematical models
Neural networks
Noise standards
Predictive models
Radioactivity
Security
Support vector machines
Training
title Isotope Identification Using Artificial Neural Network Ensembles and Bin-Ratios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isotope%20Identification%20Using%20Artificial%20Neural%20Network%20Ensembles%20and%20Bin-Ratios&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Zhang,%20Siru&rft.date=2022-06-01&rft.volume=69&rft.issue=6&rft.spage=1194&rft.epage=1202&rft.pages=1194-1202&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2022.3176586&rft_dat=%3Cproquest_RIE%3E2677852983%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677852983&rft_id=info:pmid/&rft_ieee_id=9798782&rfr_iscdi=true