Isotope Identification Using Artificial Neural Network Ensembles and Bin-Ratios
Reliable, automatic isotope identification is crucial for improving the performance of radioactivity monitoring, especially in security applications. In this article, a robust identification method based on an ensemble employing artificial neural networks (ANN) was developed and compared with other...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2022-06, Vol.69 (6), p.1194-1202 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1202 |
---|---|
container_issue | 6 |
container_start_page | 1194 |
container_title | IEEE transactions on nuclear science |
container_volume | 69 |
creator | Zhang, Siru Marsden, Edward Goulermas, John Y. |
description | Reliable, automatic isotope identification is crucial for improving the performance of radioactivity monitoring, especially in security applications. In this article, a robust identification method based on an ensemble employing artificial neural networks (ANN) was developed and compared with other popular machine learning methods. We have encoded the histogram features using bin-ratio vectors that increase the classification accuracy. To make experimentation more objective, our datasets are generated from real isotope spectra of Cs 2 LiLaBr 6 (Ce) (CLLBC) detectors using realistic background and gain shift noise profiles, based on the requirements of American National Standards Institute (ANSI) N42.34. In addition to experimenting with classifying individual isotopes we also evaluate the detection of isotope mixtures, where the proposed method also performs competitively. |
doi_str_mv | 10.1109/TNS.2022.3176586 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9798782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9798782</ieee_id><sourcerecordid>2677852983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fd45c29bd1498f9df9f05d90602e90558196db9f3b0977d27caa29f50f884a413</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA865JdrPJHGupWigtaHsO2U0iqe2mJlvE_97tB57ezPDezPBD6J6SnFICT8v5R84IY3lBRcVldYEGlHOZUS7kJRoQQmUGJcA1uklp3bclJ3yAFtMUurCzeGps23nnG9350OJV8u0nHsXjyOsNntt9PEr3E-IXnrTJbuuNTVi3Bj_7Nns_BNMtunJ6k-zdWYdo9TJZjt-y2eJ1Oh7NsoYB7TJnSt5XtaElSAfGgSPcAKkIs0D6vylUpgZX1ASEMEw0WjNwnDgpS13SYogeT3t3MXzvberUOuxj259UrBJCcgay6F3k5GpiSClap3bRb3X8VZSoAzbVY1MHbOqMrY88nCLeWvtvBwFSSFb8AdnraHE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677852983</pqid></control><display><type>article</type><title>Isotope Identification Using Artificial Neural Network Ensembles and Bin-Ratios</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Siru ; Marsden, Edward ; Goulermas, John Y.</creator><creatorcontrib>Zhang, Siru ; Marsden, Edward ; Goulermas, John Y.</creatorcontrib><description>Reliable, automatic isotope identification is crucial for improving the performance of radioactivity monitoring, especially in security applications. In this article, a robust identification method based on an ensemble employing artificial neural networks (ANN) was developed and compared with other popular machine learning methods. We have encoded the histogram features using bin-ratio vectors that increase the classification accuracy. To make experimentation more objective, our datasets are generated from real isotope spectra of Cs 2 LiLaBr 6 (Ce) (CLLBC) detectors using realistic background and gain shift noise profiles, based on the requirements of American National Standards Institute (ANSI) N42.34. In addition to experimenting with classifying individual isotopes we also evaluate the detection of isotope mixtures, where the proposed method also performs competitively.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2022.3176586</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Background noise ; Bin ratio histogram features ; Classification ; ensemble model ; Experimentation ; Histograms ; Identification methods ; isotope identification ; Isotopes ; Machine learning ; Machine learning algorithms ; Mathematical models ; Neural networks ; Noise standards ; Predictive models ; Radioactivity ; Security ; Support vector machines ; Training</subject><ispartof>IEEE transactions on nuclear science, 2022-06, Vol.69 (6), p.1194-1202</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fd45c29bd1498f9df9f05d90602e90558196db9f3b0977d27caa29f50f884a413</citedby><cites>FETCH-LOGICAL-c291t-fd45c29bd1498f9df9f05d90602e90558196db9f3b0977d27caa29f50f884a413</cites><orcidid>0000-0003-0381-124X ; 0000-0002-4095-6897 ; 0000-0002-9783-5367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9798782$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9798782$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Siru</creatorcontrib><creatorcontrib>Marsden, Edward</creatorcontrib><creatorcontrib>Goulermas, John Y.</creatorcontrib><title>Isotope Identification Using Artificial Neural Network Ensembles and Bin-Ratios</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Reliable, automatic isotope identification is crucial for improving the performance of radioactivity monitoring, especially in security applications. In this article, a robust identification method based on an ensemble employing artificial neural networks (ANN) was developed and compared with other popular machine learning methods. We have encoded the histogram features using bin-ratio vectors that increase the classification accuracy. To make experimentation more objective, our datasets are generated from real isotope spectra of Cs 2 LiLaBr 6 (Ce) (CLLBC) detectors using realistic background and gain shift noise profiles, based on the requirements of American National Standards Institute (ANSI) N42.34. In addition to experimenting with classifying individual isotopes we also evaluate the detection of isotope mixtures, where the proposed method also performs competitively.</description><subject>Artificial neural networks</subject><subject>Background noise</subject><subject>Bin ratio histogram features</subject><subject>Classification</subject><subject>ensemble model</subject><subject>Experimentation</subject><subject>Histograms</subject><subject>Identification methods</subject><subject>isotope identification</subject><subject>Isotopes</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Noise standards</subject><subject>Predictive models</subject><subject>Radioactivity</subject><subject>Security</subject><subject>Support vector machines</subject><subject>Training</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA865JdrPJHGupWigtaHsO2U0iqe2mJlvE_97tB57ezPDezPBD6J6SnFICT8v5R84IY3lBRcVldYEGlHOZUS7kJRoQQmUGJcA1uklp3bclJ3yAFtMUurCzeGps23nnG9350OJV8u0nHsXjyOsNntt9PEr3E-IXnrTJbuuNTVi3Bj_7Nns_BNMtunJ6k-zdWYdo9TJZjt-y2eJ1Oh7NsoYB7TJnSt5XtaElSAfGgSPcAKkIs0D6vylUpgZX1ASEMEw0WjNwnDgpS13SYogeT3t3MXzvberUOuxj259UrBJCcgay6F3k5GpiSClap3bRb3X8VZSoAzbVY1MHbOqMrY88nCLeWvtvBwFSSFb8AdnraHE</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Zhang, Siru</creator><creator>Marsden, Edward</creator><creator>Goulermas, John Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-0381-124X</orcidid><orcidid>https://orcid.org/0000-0002-4095-6897</orcidid><orcidid>https://orcid.org/0000-0002-9783-5367</orcidid></search><sort><creationdate>20220601</creationdate><title>Isotope Identification Using Artificial Neural Network Ensembles and Bin-Ratios</title><author>Zhang, Siru ; Marsden, Edward ; Goulermas, John Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fd45c29bd1498f9df9f05d90602e90558196db9f3b0977d27caa29f50f884a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Background noise</topic><topic>Bin ratio histogram features</topic><topic>Classification</topic><topic>ensemble model</topic><topic>Experimentation</topic><topic>Histograms</topic><topic>Identification methods</topic><topic>isotope identification</topic><topic>Isotopes</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Noise standards</topic><topic>Predictive models</topic><topic>Radioactivity</topic><topic>Security</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Siru</creatorcontrib><creatorcontrib>Marsden, Edward</creatorcontrib><creatorcontrib>Goulermas, John Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Siru</au><au>Marsden, Edward</au><au>Goulermas, John Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isotope Identification Using Artificial Neural Network Ensembles and Bin-Ratios</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>69</volume><issue>6</issue><spage>1194</spage><epage>1202</epage><pages>1194-1202</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Reliable, automatic isotope identification is crucial for improving the performance of radioactivity monitoring, especially in security applications. In this article, a robust identification method based on an ensemble employing artificial neural networks (ANN) was developed and compared with other popular machine learning methods. We have encoded the histogram features using bin-ratio vectors that increase the classification accuracy. To make experimentation more objective, our datasets are generated from real isotope spectra of Cs 2 LiLaBr 6 (Ce) (CLLBC) detectors using realistic background and gain shift noise profiles, based on the requirements of American National Standards Institute (ANSI) N42.34. In addition to experimenting with classifying individual isotopes we also evaluate the detection of isotope mixtures, where the proposed method also performs competitively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2022.3176586</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0381-124X</orcidid><orcidid>https://orcid.org/0000-0002-4095-6897</orcidid><orcidid>https://orcid.org/0000-0002-9783-5367</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2022-06, Vol.69 (6), p.1194-1202 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_ieee_primary_9798782 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Background noise Bin ratio histogram features Classification ensemble model Experimentation Histograms Identification methods isotope identification Isotopes Machine learning Machine learning algorithms Mathematical models Neural networks Noise standards Predictive models Radioactivity Security Support vector machines Training |
title | Isotope Identification Using Artificial Neural Network Ensembles and Bin-Ratios |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isotope%20Identification%20Using%20Artificial%20Neural%20Network%20Ensembles%20and%20Bin-Ratios&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Zhang,%20Siru&rft.date=2022-06-01&rft.volume=69&rft.issue=6&rft.spage=1194&rft.epage=1202&rft.pages=1194-1202&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2022.3176586&rft_dat=%3Cproquest_RIE%3E2677852983%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677852983&rft_id=info:pmid/&rft_ieee_id=9798782&rfr_iscdi=true |