Close-Range Remote Sensing of Forests: The state of the art, challenges, and opportunities for systems and data acquisitions

Remote sensing-based forest investigation and monitoring have become more affordable and applicable in the past few decades. The current bottleneck limiting practical use of the vast volume of remote sensing data lies in the lack of affordable, reliable, and detailed field references, which are requ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing magazine 2022-09, Vol.10 (3), p.32-71
Hauptverfasser: Liang, Xinlian, Kukko, Antero, Balenovic, Ivan, Saarinen, Ninni, Junttila, Samuli, Kankare, Ville, Holopainen, Markus, Mokros, Martin, Surovy, Peter, Kaartinen, Harri, Jurjevic, Luka, Honkavaara, Eija, Nasi, Roope, Liu, Jingbin, Hollaus, Markus, Tian, Jiaojiao, Yu, Xiaowei, Pan, Jie, Cai, Shangshu, Virtanen, Juho-Pekka, Wang, Yunsheng, Hyyppa, Juha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue 3
container_start_page 32
container_title IEEE geoscience and remote sensing magazine
container_volume 10
creator Liang, Xinlian
Kukko, Antero
Balenovic, Ivan
Saarinen, Ninni
Junttila, Samuli
Kankare, Ville
Holopainen, Markus
Mokros, Martin
Surovy, Peter
Kaartinen, Harri
Jurjevic, Luka
Honkavaara, Eija
Nasi, Roope
Liu, Jingbin
Hollaus, Markus
Tian, Jiaojiao
Yu, Xiaowei
Pan, Jie
Cai, Shangshu
Virtanen, Juho-Pekka
Wang, Yunsheng
Hyyppa, Juha
description Remote sensing-based forest investigation and monitoring have become more affordable and applicable in the past few decades. The current bottleneck limiting practical use of the vast volume of remote sensing data lies in the lack of affordable, reliable, and detailed field references, which are required for necessary calibrations of satellite and aerial data and calibrations of relevant allometric models. Conventional field investigations are mostly limited to a small scale, using a small quantity of observations. Rapid development in close-range remote sensing has been witnessed during the past two decades, i.e., in the constant decrease of the costs, size, and weight of sensors; steady improvements in the availability, mobility, and reliability of platforms; and progress in computational capacity and data science. These advances have paved the way for turning conventional expensive and inefficient manual forest in situ data collections into affordable and efficient autonomous observations.
doi_str_mv 10.1109/MGRS.2022.3168135
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_9797818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9797818</ieee_id><sourcerecordid>10_1109_MGRS_2022_3168135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-9220824b03c04841f08b37651eb2b6091785600ca45543cdf05c1861ddbaf833</originalsourceid><addsrcrecordid>eNo9kN1OAjEQhRujiQR5AONNH4DFTrs_Xe8METTBmAD3m253FtbAFjvlgsSHt4hxbubnnDMXH2P3ICYAonx8ny9XEymknCjINajsig1knJJcK7iOc1qoRKqyuGUjok8RS2dQgh6w7-nOESZL02-QL3HvAvIV9tT1G-5aPnMeKdATX2-RUzBRjdcQF-PDmNut2e0wRmnMTd9wdzg4H459Fzok3jrP6UQB9_SrNiYYbuzXsaNocD3dsZvW7AhHf33I1rOX9fQ1WXzM36bPi8QqoUNSSim0TGuhrEh1Cq3QtSryDLCWdS5KKHSWC2FNmmWpsk0rMgs6h6apTauVGjK4vLXeEXlsq4Pv9safKhDVGWB1BlidAVZ_AGPm4ZLpEPHfXxZloUGrH_dUbPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Close-Range Remote Sensing of Forests: The state of the art, challenges, and opportunities for systems and data acquisitions</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Xinlian ; Kukko, Antero ; Balenovic, Ivan ; Saarinen, Ninni ; Junttila, Samuli ; Kankare, Ville ; Holopainen, Markus ; Mokros, Martin ; Surovy, Peter ; Kaartinen, Harri ; Jurjevic, Luka ; Honkavaara, Eija ; Nasi, Roope ; Liu, Jingbin ; Hollaus, Markus ; Tian, Jiaojiao ; Yu, Xiaowei ; Pan, Jie ; Cai, Shangshu ; Virtanen, Juho-Pekka ; Wang, Yunsheng ; Hyyppa, Juha</creator><creatorcontrib>Liang, Xinlian ; Kukko, Antero ; Balenovic, Ivan ; Saarinen, Ninni ; Junttila, Samuli ; Kankare, Ville ; Holopainen, Markus ; Mokros, Martin ; Surovy, Peter ; Kaartinen, Harri ; Jurjevic, Luka ; Honkavaara, Eija ; Nasi, Roope ; Liu, Jingbin ; Hollaus, Markus ; Tian, Jiaojiao ; Yu, Xiaowei ; Pan, Jie ; Cai, Shangshu ; Virtanen, Juho-Pekka ; Wang, Yunsheng ; Hyyppa, Juha</creatorcontrib><description>Remote sensing-based forest investigation and monitoring have become more affordable and applicable in the past few decades. The current bottleneck limiting practical use of the vast volume of remote sensing data lies in the lack of affordable, reliable, and detailed field references, which are required for necessary calibrations of satellite and aerial data and calibrations of relevant allometric models. Conventional field investigations are mostly limited to a small scale, using a small quantity of observations. Rapid development in close-range remote sensing has been witnessed during the past two decades, i.e., in the constant decrease of the costs, size, and weight of sensors; steady improvements in the availability, mobility, and reliability of platforms; and progress in computational capacity and data science. These advances have paved the way for turning conventional expensive and inefficient manual forest in situ data collections into affordable and efficient autonomous observations.</description><identifier>ISSN: 2473-2397</identifier><identifier>EISSN: 2168-6831</identifier><identifier>DOI: 10.1109/MGRS.2022.3168135</identifier><identifier>CODEN: IGRSCZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; Forestry ; Monitoring ; Protocols ; Remote sensing ; Satellite communication ; Sensors ; Vegetation mapping</subject><ispartof>IEEE geoscience and remote sensing magazine, 2022-09, Vol.10 (3), p.32-71</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-9220824b03c04841f08b37651eb2b6091785600ca45543cdf05c1861ddbaf833</citedby><cites>FETCH-LOGICAL-c308t-9220824b03c04841f08b37651eb2b6091785600ca45543cdf05c1861ddbaf833</cites><orcidid>0000-0002-1585-2340 ; 0000-0002-4796-3942 ; 0000-0002-8407-5098 ; 0000-0002-7236-2145 ; 0000-0002-3841-6533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9797818$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9797818$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Xinlian</creatorcontrib><creatorcontrib>Kukko, Antero</creatorcontrib><creatorcontrib>Balenovic, Ivan</creatorcontrib><creatorcontrib>Saarinen, Ninni</creatorcontrib><creatorcontrib>Junttila, Samuli</creatorcontrib><creatorcontrib>Kankare, Ville</creatorcontrib><creatorcontrib>Holopainen, Markus</creatorcontrib><creatorcontrib>Mokros, Martin</creatorcontrib><creatorcontrib>Surovy, Peter</creatorcontrib><creatorcontrib>Kaartinen, Harri</creatorcontrib><creatorcontrib>Jurjevic, Luka</creatorcontrib><creatorcontrib>Honkavaara, Eija</creatorcontrib><creatorcontrib>Nasi, Roope</creatorcontrib><creatorcontrib>Liu, Jingbin</creatorcontrib><creatorcontrib>Hollaus, Markus</creatorcontrib><creatorcontrib>Tian, Jiaojiao</creatorcontrib><creatorcontrib>Yu, Xiaowei</creatorcontrib><creatorcontrib>Pan, Jie</creatorcontrib><creatorcontrib>Cai, Shangshu</creatorcontrib><creatorcontrib>Virtanen, Juho-Pekka</creatorcontrib><creatorcontrib>Wang, Yunsheng</creatorcontrib><creatorcontrib>Hyyppa, Juha</creatorcontrib><title>Close-Range Remote Sensing of Forests: The state of the art, challenges, and opportunities for systems and data acquisitions</title><title>IEEE geoscience and remote sensing magazine</title><addtitle>GRSM</addtitle><description>Remote sensing-based forest investigation and monitoring have become more affordable and applicable in the past few decades. The current bottleneck limiting practical use of the vast volume of remote sensing data lies in the lack of affordable, reliable, and detailed field references, which are required for necessary calibrations of satellite and aerial data and calibrations of relevant allometric models. Conventional field investigations are mostly limited to a small scale, using a small quantity of observations. Rapid development in close-range remote sensing has been witnessed during the past two decades, i.e., in the constant decrease of the costs, size, and weight of sensors; steady improvements in the availability, mobility, and reliability of platforms; and progress in computational capacity and data science. These advances have paved the way for turning conventional expensive and inefficient manual forest in situ data collections into affordable and efficient autonomous observations.</description><subject>Data models</subject><subject>Forestry</subject><subject>Monitoring</subject><subject>Protocols</subject><subject>Remote sensing</subject><subject>Satellite communication</subject><subject>Sensors</subject><subject>Vegetation mapping</subject><issn>2473-2397</issn><issn>2168-6831</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1OAjEQhRujiQR5AONNH4DFTrs_Xe8METTBmAD3m253FtbAFjvlgsSHt4hxbubnnDMXH2P3ICYAonx8ny9XEymknCjINajsig1knJJcK7iOc1qoRKqyuGUjok8RS2dQgh6w7-nOESZL02-QL3HvAvIV9tT1G-5aPnMeKdATX2-RUzBRjdcQF-PDmNut2e0wRmnMTd9wdzg4H459Fzok3jrP6UQB9_SrNiYYbuzXsaNocD3dsZvW7AhHf33I1rOX9fQ1WXzM36bPi8QqoUNSSim0TGuhrEh1Cq3QtSryDLCWdS5KKHSWC2FNmmWpsk0rMgs6h6apTauVGjK4vLXeEXlsq4Pv9safKhDVGWB1BlidAVZ_AGPm4ZLpEPHfXxZloUGrH_dUbPA</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Liang, Xinlian</creator><creator>Kukko, Antero</creator><creator>Balenovic, Ivan</creator><creator>Saarinen, Ninni</creator><creator>Junttila, Samuli</creator><creator>Kankare, Ville</creator><creator>Holopainen, Markus</creator><creator>Mokros, Martin</creator><creator>Surovy, Peter</creator><creator>Kaartinen, Harri</creator><creator>Jurjevic, Luka</creator><creator>Honkavaara, Eija</creator><creator>Nasi, Roope</creator><creator>Liu, Jingbin</creator><creator>Hollaus, Markus</creator><creator>Tian, Jiaojiao</creator><creator>Yu, Xiaowei</creator><creator>Pan, Jie</creator><creator>Cai, Shangshu</creator><creator>Virtanen, Juho-Pekka</creator><creator>Wang, Yunsheng</creator><creator>Hyyppa, Juha</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1585-2340</orcidid><orcidid>https://orcid.org/0000-0002-4796-3942</orcidid><orcidid>https://orcid.org/0000-0002-8407-5098</orcidid><orcidid>https://orcid.org/0000-0002-7236-2145</orcidid><orcidid>https://orcid.org/0000-0002-3841-6533</orcidid></search><sort><creationdate>202209</creationdate><title>Close-Range Remote Sensing of Forests: The state of the art, challenges, and opportunities for systems and data acquisitions</title><author>Liang, Xinlian ; Kukko, Antero ; Balenovic, Ivan ; Saarinen, Ninni ; Junttila, Samuli ; Kankare, Ville ; Holopainen, Markus ; Mokros, Martin ; Surovy, Peter ; Kaartinen, Harri ; Jurjevic, Luka ; Honkavaara, Eija ; Nasi, Roope ; Liu, Jingbin ; Hollaus, Markus ; Tian, Jiaojiao ; Yu, Xiaowei ; Pan, Jie ; Cai, Shangshu ; Virtanen, Juho-Pekka ; Wang, Yunsheng ; Hyyppa, Juha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-9220824b03c04841f08b37651eb2b6091785600ca45543cdf05c1861ddbaf833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data models</topic><topic>Forestry</topic><topic>Monitoring</topic><topic>Protocols</topic><topic>Remote sensing</topic><topic>Satellite communication</topic><topic>Sensors</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xinlian</creatorcontrib><creatorcontrib>Kukko, Antero</creatorcontrib><creatorcontrib>Balenovic, Ivan</creatorcontrib><creatorcontrib>Saarinen, Ninni</creatorcontrib><creatorcontrib>Junttila, Samuli</creatorcontrib><creatorcontrib>Kankare, Ville</creatorcontrib><creatorcontrib>Holopainen, Markus</creatorcontrib><creatorcontrib>Mokros, Martin</creatorcontrib><creatorcontrib>Surovy, Peter</creatorcontrib><creatorcontrib>Kaartinen, Harri</creatorcontrib><creatorcontrib>Jurjevic, Luka</creatorcontrib><creatorcontrib>Honkavaara, Eija</creatorcontrib><creatorcontrib>Nasi, Roope</creatorcontrib><creatorcontrib>Liu, Jingbin</creatorcontrib><creatorcontrib>Hollaus, Markus</creatorcontrib><creatorcontrib>Tian, Jiaojiao</creatorcontrib><creatorcontrib>Yu, Xiaowei</creatorcontrib><creatorcontrib>Pan, Jie</creatorcontrib><creatorcontrib>Cai, Shangshu</creatorcontrib><creatorcontrib>Virtanen, Juho-Pekka</creatorcontrib><creatorcontrib>Wang, Yunsheng</creatorcontrib><creatorcontrib>Hyyppa, Juha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE geoscience and remote sensing magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Xinlian</au><au>Kukko, Antero</au><au>Balenovic, Ivan</au><au>Saarinen, Ninni</au><au>Junttila, Samuli</au><au>Kankare, Ville</au><au>Holopainen, Markus</au><au>Mokros, Martin</au><au>Surovy, Peter</au><au>Kaartinen, Harri</au><au>Jurjevic, Luka</au><au>Honkavaara, Eija</au><au>Nasi, Roope</au><au>Liu, Jingbin</au><au>Hollaus, Markus</au><au>Tian, Jiaojiao</au><au>Yu, Xiaowei</au><au>Pan, Jie</au><au>Cai, Shangshu</au><au>Virtanen, Juho-Pekka</au><au>Wang, Yunsheng</au><au>Hyyppa, Juha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Close-Range Remote Sensing of Forests: The state of the art, challenges, and opportunities for systems and data acquisitions</atitle><jtitle>IEEE geoscience and remote sensing magazine</jtitle><stitle>GRSM</stitle><date>2022-09</date><risdate>2022</risdate><volume>10</volume><issue>3</issue><spage>32</spage><epage>71</epage><pages>32-71</pages><issn>2473-2397</issn><eissn>2168-6831</eissn><coden>IGRSCZ</coden><abstract>Remote sensing-based forest investigation and monitoring have become more affordable and applicable in the past few decades. The current bottleneck limiting practical use of the vast volume of remote sensing data lies in the lack of affordable, reliable, and detailed field references, which are required for necessary calibrations of satellite and aerial data and calibrations of relevant allometric models. Conventional field investigations are mostly limited to a small scale, using a small quantity of observations. Rapid development in close-range remote sensing has been witnessed during the past two decades, i.e., in the constant decrease of the costs, size, and weight of sensors; steady improvements in the availability, mobility, and reliability of platforms; and progress in computational capacity and data science. These advances have paved the way for turning conventional expensive and inefficient manual forest in situ data collections into affordable and efficient autonomous observations.</abstract><pub>IEEE</pub><doi>10.1109/MGRS.2022.3168135</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0002-1585-2340</orcidid><orcidid>https://orcid.org/0000-0002-4796-3942</orcidid><orcidid>https://orcid.org/0000-0002-8407-5098</orcidid><orcidid>https://orcid.org/0000-0002-7236-2145</orcidid><orcidid>https://orcid.org/0000-0002-3841-6533</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2473-2397
ispartof IEEE geoscience and remote sensing magazine, 2022-09, Vol.10 (3), p.32-71
issn 2473-2397
2168-6831
language eng
recordid cdi_ieee_primary_9797818
source IEEE Electronic Library (IEL)
subjects Data models
Forestry
Monitoring
Protocols
Remote sensing
Satellite communication
Sensors
Vegetation mapping
title Close-Range Remote Sensing of Forests: The state of the art, challenges, and opportunities for systems and data acquisitions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Close-Range%20Remote%20Sensing%20of%20Forests:%20The%20state%20of%20the%20art,%20challenges,%20and%20opportunities%20for%20systems%20and%20data%20acquisitions&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20magazine&rft.au=Liang,%20Xinlian&rft.date=2022-09&rft.volume=10&rft.issue=3&rft.spage=32&rft.epage=71&rft.pages=32-71&rft.issn=2473-2397&rft.eissn=2168-6831&rft.coden=IGRSCZ&rft_id=info:doi/10.1109/MGRS.2022.3168135&rft_dat=%3Ccrossref_RIE%3E10_1109_MGRS_2022_3168135%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9797818&rfr_iscdi=true