Self-Adaptation Graph Attention Network via Meta-Learning for Machinery Fault Diagnosis With Few Labeled Data
Effective application of fault diagnosis models requires that new fault types can be recognized rapidly after they occur few times, even only one time. To this end, a self-adaptation graph attention network via meta-learning (SGANM) is proposed. Specifically, based on a collected large-scale labeled...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!