LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time 3D Mapping
Lidar odometry has attracted considerable attention as a robust localization method for autonomous robots operating in complex GNSS-denied environments. However, achieving reliable and efficient performance on heterogeneous platforms in large-scale environments remains an open challenge due to the l...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2022-10, Vol.7 (4), p.9043-9050 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9050 |
---|---|
container_issue | 4 |
container_start_page | 9043 |
container_title | IEEE robotics and automation letters |
container_volume | 7 |
creator | Reinke, Andrzej Palieri, Matteo Morrell, Benjamin Chang, Yun Ebadi, Kamak Carlone, Luca Agha-Mohammadi, Ali-Akbar |
description | Lidar odometry has attracted considerable attention as a robust localization method for autonomous robots operating in complex GNSS-denied environments. However, achieving reliable and efficient performance on heterogeneous platforms in large-scale environments remains an open challenge due to the limitations of onboard computation and memory resources needed for autonomous operation. In this work, we present LOCUS 2.0, a robust and computationally-efficient lidar odometry system for real-time underground 3D mapping. LOCUS 2.0 includes a novel normals-based Generalized Iterative Closest Point (GICP) formulation that reduces the computation time of point cloud alignment, an adaptive voxel grid filter that maintains the desired computation load regardless of the environment's geometry, and a sliding-window map approach that bounds the memory consumption. The proposed approach is shown to be suitable to be deployed on heterogeneous robotic platforms involved in large-scale explorations under severe computation and memory constraints. We demonstrate LOCUS 2.0, a key element of the CoSTAR team's entry in the DARPA Subterranean Challenge, across various underground scenarios. We release LOCUS 2.0 as an open-source library and also release a lidar-based odometry dataset in challenging and large-scale underground environments. The dataset features legged and wheeled platforms in multiple environments including fog, dust, darkness, and geometrically degenerate surroundings with a total of \text{11}\;\text{h} of operations and \text{16}\;\text{km} of distance traveled. |
doi_str_mv | 10.1109/LRA.2022.3181357 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9793601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9793601</ieee_id><sourcerecordid>2691864889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b5a9fd5db1f7072a3a9f5f3437c4ef935997fa4abf6c7aec3704e43316e9128c3</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOHR3wUvAc2uS1zaNt1HnD6gM5obHkLaJZLRNTbrD_ns7NsTT-z74fB-PD0J3lMSUEvFYrhcxI4zFQHMKKb9AMwacR8Cz7PJfvkbzEHaEEJoyDiKdoa9yVWw_MYvJE167ah9GrPoGF64b9qMaretV2x7w0hhbW92PuLSN8njVuE6P_oCN83itVRttbKcxPOMPNQy2_75FV0a1Qc_P8wZtX5ab4i0qV6_vxaKMaiboGFWpEqZJm4oaTjhTMK2pgQR4nWgjIBWCG5WoymQ1V7oGThKdANBMC8ryGm7Qw-nu4N3PXodR7tzeT08HyTJB8yzJczFR5ETV3oXgtZGDt53yB0mJPBqUk0F5NCjPBqfK_alitdZ_uOACMkLhF6G8al4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691864889</pqid></control><display><type>article</type><title>LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time 3D Mapping</title><source>IEEE Electronic Library (IEL)</source><creator>Reinke, Andrzej ; Palieri, Matteo ; Morrell, Benjamin ; Chang, Yun ; Ebadi, Kamak ; Carlone, Luca ; Agha-Mohammadi, Ali-Akbar</creator><creatorcontrib>Reinke, Andrzej ; Palieri, Matteo ; Morrell, Benjamin ; Chang, Yun ; Ebadi, Kamak ; Carlone, Luca ; Agha-Mohammadi, Ali-Akbar</creatorcontrib><description><![CDATA[Lidar odometry has attracted considerable attention as a robust localization method for autonomous robots operating in complex GNSS-denied environments. However, achieving reliable and efficient performance on heterogeneous platforms in large-scale environments remains an open challenge due to the limitations of onboard computation and memory resources needed for autonomous operation. In this work, we present LOCUS 2.0, a robust and computationally-efficient lidar odometry system for real-time underground 3D mapping. LOCUS 2.0 includes a novel normals-based Generalized Iterative Closest Point (GICP) formulation that reduces the computation time of point cloud alignment, an adaptive voxel grid filter that maintains the desired computation load regardless of the environment's geometry, and a sliding-window map approach that bounds the memory consumption. The proposed approach is shown to be suitable to be deployed on heterogeneous robotic platforms involved in large-scale explorations under severe computation and memory constraints. We demonstrate LOCUS 2.0, a key element of the CoSTAR team's entry in the DARPA Subterranean Challenge, across various underground scenarios. We release LOCUS 2.0 as an open-source library and also release a lidar-based odometry dataset in challenging and large-scale underground environments. The dataset features legged and wheeled platforms in multiple environments including fog, dust, darkness, and geometrically degenerate surroundings with a total of <inline-formula><tex-math notation="LaTeX">\text{11}\;\text{h}</tex-math></inline-formula> of operations and <inline-formula><tex-math notation="LaTeX">\text{16}\;\text{km}</tex-math></inline-formula> of distance traveled.]]></description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2022.3181357</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational efficiency ; Darkness ; data sets for SLAM ; Datasets ; Iterative methods ; Laser radar ; Lidar ; Localization method ; Loci ; Mapping ; Memory management ; Odometers ; Platforms ; Point cloud compression ; Real time ; Real-time systems ; Robot sensing systems ; robotics in under-resourced settings ; Robots ; Robustness (mathematics) ; sensor fusion ; SLAM ; Three-dimensional displays</subject><ispartof>IEEE robotics and automation letters, 2022-10, Vol.7 (4), p.9043-9050</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b5a9fd5db1f7072a3a9f5f3437c4ef935997fa4abf6c7aec3704e43316e9128c3</citedby><cites>FETCH-LOGICAL-c291t-b5a9fd5db1f7072a3a9f5f3437c4ef935997fa4abf6c7aec3704e43316e9128c3</cites><orcidid>0000-0001-6905-200X ; 0000-0002-2829-5256 ; 0000-0001-8218-3346 ; 0000-0002-4094-7077 ; 0000-0001-5509-1841 ; 0000-0002-9768-3615 ; 0000-0003-1884-5397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9793601$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9793601$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reinke, Andrzej</creatorcontrib><creatorcontrib>Palieri, Matteo</creatorcontrib><creatorcontrib>Morrell, Benjamin</creatorcontrib><creatorcontrib>Chang, Yun</creatorcontrib><creatorcontrib>Ebadi, Kamak</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><creatorcontrib>Agha-Mohammadi, Ali-Akbar</creatorcontrib><title>LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time 3D Mapping</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description><![CDATA[Lidar odometry has attracted considerable attention as a robust localization method for autonomous robots operating in complex GNSS-denied environments. However, achieving reliable and efficient performance on heterogeneous platforms in large-scale environments remains an open challenge due to the limitations of onboard computation and memory resources needed for autonomous operation. In this work, we present LOCUS 2.0, a robust and computationally-efficient lidar odometry system for real-time underground 3D mapping. LOCUS 2.0 includes a novel normals-based Generalized Iterative Closest Point (GICP) formulation that reduces the computation time of point cloud alignment, an adaptive voxel grid filter that maintains the desired computation load regardless of the environment's geometry, and a sliding-window map approach that bounds the memory consumption. The proposed approach is shown to be suitable to be deployed on heterogeneous robotic platforms involved in large-scale explorations under severe computation and memory constraints. We demonstrate LOCUS 2.0, a key element of the CoSTAR team's entry in the DARPA Subterranean Challenge, across various underground scenarios. We release LOCUS 2.0 as an open-source library and also release a lidar-based odometry dataset in challenging and large-scale underground environments. The dataset features legged and wheeled platforms in multiple environments including fog, dust, darkness, and geometrically degenerate surroundings with a total of <inline-formula><tex-math notation="LaTeX">\text{11}\;\text{h}</tex-math></inline-formula> of operations and <inline-formula><tex-math notation="LaTeX">\text{16}\;\text{km}</tex-math></inline-formula> of distance traveled.]]></description><subject>Computational efficiency</subject><subject>Darkness</subject><subject>data sets for SLAM</subject><subject>Datasets</subject><subject>Iterative methods</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Localization method</subject><subject>Loci</subject><subject>Mapping</subject><subject>Memory management</subject><subject>Odometers</subject><subject>Platforms</subject><subject>Point cloud compression</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Robot sensing systems</subject><subject>robotics in under-resourced settings</subject><subject>Robots</subject><subject>Robustness (mathematics)</subject><subject>sensor fusion</subject><subject>SLAM</subject><subject>Three-dimensional displays</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUx4MoOHR3wUvAc2uS1zaNt1HnD6gM5obHkLaJZLRNTbrD_ns7NsTT-z74fB-PD0J3lMSUEvFYrhcxI4zFQHMKKb9AMwacR8Cz7PJfvkbzEHaEEJoyDiKdoa9yVWw_MYvJE167ah9GrPoGF64b9qMaretV2x7w0hhbW92PuLSN8njVuE6P_oCN83itVRttbKcxPOMPNQy2_75FV0a1Qc_P8wZtX5ab4i0qV6_vxaKMaiboGFWpEqZJm4oaTjhTMK2pgQR4nWgjIBWCG5WoymQ1V7oGThKdANBMC8ryGm7Qw-nu4N3PXodR7tzeT08HyTJB8yzJczFR5ETV3oXgtZGDt53yB0mJPBqUk0F5NCjPBqfK_alitdZ_uOACMkLhF6G8al4</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Reinke, Andrzej</creator><creator>Palieri, Matteo</creator><creator>Morrell, Benjamin</creator><creator>Chang, Yun</creator><creator>Ebadi, Kamak</creator><creator>Carlone, Luca</creator><creator>Agha-Mohammadi, Ali-Akbar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6905-200X</orcidid><orcidid>https://orcid.org/0000-0002-2829-5256</orcidid><orcidid>https://orcid.org/0000-0001-8218-3346</orcidid><orcidid>https://orcid.org/0000-0002-4094-7077</orcidid><orcidid>https://orcid.org/0000-0001-5509-1841</orcidid><orcidid>https://orcid.org/0000-0002-9768-3615</orcidid><orcidid>https://orcid.org/0000-0003-1884-5397</orcidid></search><sort><creationdate>20221001</creationdate><title>LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time 3D Mapping</title><author>Reinke, Andrzej ; Palieri, Matteo ; Morrell, Benjamin ; Chang, Yun ; Ebadi, Kamak ; Carlone, Luca ; Agha-Mohammadi, Ali-Akbar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b5a9fd5db1f7072a3a9f5f3437c4ef935997fa4abf6c7aec3704e43316e9128c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational efficiency</topic><topic>Darkness</topic><topic>data sets for SLAM</topic><topic>Datasets</topic><topic>Iterative methods</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Localization method</topic><topic>Loci</topic><topic>Mapping</topic><topic>Memory management</topic><topic>Odometers</topic><topic>Platforms</topic><topic>Point cloud compression</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Robot sensing systems</topic><topic>robotics in under-resourced settings</topic><topic>Robots</topic><topic>Robustness (mathematics)</topic><topic>sensor fusion</topic><topic>SLAM</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reinke, Andrzej</creatorcontrib><creatorcontrib>Palieri, Matteo</creatorcontrib><creatorcontrib>Morrell, Benjamin</creatorcontrib><creatorcontrib>Chang, Yun</creatorcontrib><creatorcontrib>Ebadi, Kamak</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><creatorcontrib>Agha-Mohammadi, Ali-Akbar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reinke, Andrzej</au><au>Palieri, Matteo</au><au>Morrell, Benjamin</au><au>Chang, Yun</au><au>Ebadi, Kamak</au><au>Carlone, Luca</au><au>Agha-Mohammadi, Ali-Akbar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time 3D Mapping</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>7</volume><issue>4</issue><spage>9043</spage><epage>9050</epage><pages>9043-9050</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract><![CDATA[Lidar odometry has attracted considerable attention as a robust localization method for autonomous robots operating in complex GNSS-denied environments. However, achieving reliable and efficient performance on heterogeneous platforms in large-scale environments remains an open challenge due to the limitations of onboard computation and memory resources needed for autonomous operation. In this work, we present LOCUS 2.0, a robust and computationally-efficient lidar odometry system for real-time underground 3D mapping. LOCUS 2.0 includes a novel normals-based Generalized Iterative Closest Point (GICP) formulation that reduces the computation time of point cloud alignment, an adaptive voxel grid filter that maintains the desired computation load regardless of the environment's geometry, and a sliding-window map approach that bounds the memory consumption. The proposed approach is shown to be suitable to be deployed on heterogeneous robotic platforms involved in large-scale explorations under severe computation and memory constraints. We demonstrate LOCUS 2.0, a key element of the CoSTAR team's entry in the DARPA Subterranean Challenge, across various underground scenarios. We release LOCUS 2.0 as an open-source library and also release a lidar-based odometry dataset in challenging and large-scale underground environments. The dataset features legged and wheeled platforms in multiple environments including fog, dust, darkness, and geometrically degenerate surroundings with a total of <inline-formula><tex-math notation="LaTeX">\text{11}\;\text{h}</tex-math></inline-formula> of operations and <inline-formula><tex-math notation="LaTeX">\text{16}\;\text{km}</tex-math></inline-formula> of distance traveled.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2022.3181357</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6905-200X</orcidid><orcidid>https://orcid.org/0000-0002-2829-5256</orcidid><orcidid>https://orcid.org/0000-0001-8218-3346</orcidid><orcidid>https://orcid.org/0000-0002-4094-7077</orcidid><orcidid>https://orcid.org/0000-0001-5509-1841</orcidid><orcidid>https://orcid.org/0000-0002-9768-3615</orcidid><orcidid>https://orcid.org/0000-0003-1884-5397</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2022-10, Vol.7 (4), p.9043-9050 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_9793601 |
source | IEEE Electronic Library (IEL) |
subjects | Computational efficiency Darkness data sets for SLAM Datasets Iterative methods Laser radar Lidar Localization method Loci Mapping Memory management Odometers Platforms Point cloud compression Real time Real-time systems Robot sensing systems robotics in under-resourced settings Robots Robustness (mathematics) sensor fusion SLAM Three-dimensional displays |
title | LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time 3D Mapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LOCUS%202.0:%20Robust%20and%20Computationally%20Efficient%20Lidar%20Odometry%20for%20Real-Time%203D%20Mapping&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Reinke,%20Andrzej&rft.date=2022-10-01&rft.volume=7&rft.issue=4&rft.spage=9043&rft.epage=9050&rft.pages=9043-9050&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2022.3181357&rft_dat=%3Cproquest_RIE%3E2691864889%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691864889&rft_id=info:pmid/&rft_ieee_id=9793601&rfr_iscdi=true |