LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time 3D Mapping

Lidar odometry has attracted considerable attention as a robust localization method for autonomous robots operating in complex GNSS-denied environments. However, achieving reliable and efficient performance on heterogeneous platforms in large-scale environments remains an open challenge due to the l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2022-10, Vol.7 (4), p.9043-9050
Hauptverfasser: Reinke, Andrzej, Palieri, Matteo, Morrell, Benjamin, Chang, Yun, Ebadi, Kamak, Carlone, Luca, Agha-Mohammadi, Ali-Akbar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9050
container_issue 4
container_start_page 9043
container_title IEEE robotics and automation letters
container_volume 7
creator Reinke, Andrzej
Palieri, Matteo
Morrell, Benjamin
Chang, Yun
Ebadi, Kamak
Carlone, Luca
Agha-Mohammadi, Ali-Akbar
description Lidar odometry has attracted considerable attention as a robust localization method for autonomous robots operating in complex GNSS-denied environments. However, achieving reliable and efficient performance on heterogeneous platforms in large-scale environments remains an open challenge due to the limitations of onboard computation and memory resources needed for autonomous operation. In this work, we present LOCUS 2.0, a robust and computationally-efficient lidar odometry system for real-time underground 3D mapping. LOCUS 2.0 includes a novel normals-based Generalized Iterative Closest Point (GICP) formulation that reduces the computation time of point cloud alignment, an adaptive voxel grid filter that maintains the desired computation load regardless of the environment's geometry, and a sliding-window map approach that bounds the memory consumption. The proposed approach is shown to be suitable to be deployed on heterogeneous robotic platforms involved in large-scale explorations under severe computation and memory constraints. We demonstrate LOCUS 2.0, a key element of the CoSTAR team's entry in the DARPA Subterranean Challenge, across various underground scenarios. We release LOCUS 2.0 as an open-source library and also release a lidar-based odometry dataset in challenging and large-scale underground environments. The dataset features legged and wheeled platforms in multiple environments including fog, dust, darkness, and geometrically degenerate surroundings with a total of \text{11}\;\text{h} of operations and \text{16}\;\text{km} of distance traveled.
doi_str_mv 10.1109/LRA.2022.3181357
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9793601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9793601</ieee_id><sourcerecordid>2691864889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b5a9fd5db1f7072a3a9f5f3437c4ef935997fa4abf6c7aec3704e43316e9128c3</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOHR3wUvAc2uS1zaNt1HnD6gM5obHkLaJZLRNTbrD_ns7NsTT-z74fB-PD0J3lMSUEvFYrhcxI4zFQHMKKb9AMwacR8Cz7PJfvkbzEHaEEJoyDiKdoa9yVWw_MYvJE167ah9GrPoGF64b9qMaretV2x7w0hhbW92PuLSN8njVuE6P_oCN83itVRttbKcxPOMPNQy2_75FV0a1Qc_P8wZtX5ab4i0qV6_vxaKMaiboGFWpEqZJm4oaTjhTMK2pgQR4nWgjIBWCG5WoymQ1V7oGThKdANBMC8ryGm7Qw-nu4N3PXodR7tzeT08HyTJB8yzJczFR5ETV3oXgtZGDt53yB0mJPBqUk0F5NCjPBqfK_alitdZ_uOACMkLhF6G8al4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691864889</pqid></control><display><type>article</type><title>LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time 3D Mapping</title><source>IEEE Electronic Library (IEL)</source><creator>Reinke, Andrzej ; Palieri, Matteo ; Morrell, Benjamin ; Chang, Yun ; Ebadi, Kamak ; Carlone, Luca ; Agha-Mohammadi, Ali-Akbar</creator><creatorcontrib>Reinke, Andrzej ; Palieri, Matteo ; Morrell, Benjamin ; Chang, Yun ; Ebadi, Kamak ; Carlone, Luca ; Agha-Mohammadi, Ali-Akbar</creatorcontrib><description><![CDATA[Lidar odometry has attracted considerable attention as a robust localization method for autonomous robots operating in complex GNSS-denied environments. However, achieving reliable and efficient performance on heterogeneous platforms in large-scale environments remains an open challenge due to the limitations of onboard computation and memory resources needed for autonomous operation. In this work, we present LOCUS 2.0, a robust and computationally-efficient lidar odometry system for real-time underground 3D mapping. LOCUS 2.0 includes a novel normals-based Generalized Iterative Closest Point (GICP) formulation that reduces the computation time of point cloud alignment, an adaptive voxel grid filter that maintains the desired computation load regardless of the environment's geometry, and a sliding-window map approach that bounds the memory consumption. The proposed approach is shown to be suitable to be deployed on heterogeneous robotic platforms involved in large-scale explorations under severe computation and memory constraints. We demonstrate LOCUS 2.0, a key element of the CoSTAR team's entry in the DARPA Subterranean Challenge, across various underground scenarios. We release LOCUS 2.0 as an open-source library and also release a lidar-based odometry dataset in challenging and large-scale underground environments. The dataset features legged and wheeled platforms in multiple environments including fog, dust, darkness, and geometrically degenerate surroundings with a total of <inline-formula><tex-math notation="LaTeX">\text{11}\;\text{h}</tex-math></inline-formula> of operations and <inline-formula><tex-math notation="LaTeX">\text{16}\;\text{km}</tex-math></inline-formula> of distance traveled.]]></description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2022.3181357</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational efficiency ; Darkness ; data sets for SLAM ; Datasets ; Iterative methods ; Laser radar ; Lidar ; Localization method ; Loci ; Mapping ; Memory management ; Odometers ; Platforms ; Point cloud compression ; Real time ; Real-time systems ; Robot sensing systems ; robotics in under-resourced settings ; Robots ; Robustness (mathematics) ; sensor fusion ; SLAM ; Three-dimensional displays</subject><ispartof>IEEE robotics and automation letters, 2022-10, Vol.7 (4), p.9043-9050</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b5a9fd5db1f7072a3a9f5f3437c4ef935997fa4abf6c7aec3704e43316e9128c3</citedby><cites>FETCH-LOGICAL-c291t-b5a9fd5db1f7072a3a9f5f3437c4ef935997fa4abf6c7aec3704e43316e9128c3</cites><orcidid>0000-0001-6905-200X ; 0000-0002-2829-5256 ; 0000-0001-8218-3346 ; 0000-0002-4094-7077 ; 0000-0001-5509-1841 ; 0000-0002-9768-3615 ; 0000-0003-1884-5397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9793601$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9793601$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reinke, Andrzej</creatorcontrib><creatorcontrib>Palieri, Matteo</creatorcontrib><creatorcontrib>Morrell, Benjamin</creatorcontrib><creatorcontrib>Chang, Yun</creatorcontrib><creatorcontrib>Ebadi, Kamak</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><creatorcontrib>Agha-Mohammadi, Ali-Akbar</creatorcontrib><title>LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time 3D Mapping</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description><![CDATA[Lidar odometry has attracted considerable attention as a robust localization method for autonomous robots operating in complex GNSS-denied environments. However, achieving reliable and efficient performance on heterogeneous platforms in large-scale environments remains an open challenge due to the limitations of onboard computation and memory resources needed for autonomous operation. In this work, we present LOCUS 2.0, a robust and computationally-efficient lidar odometry system for real-time underground 3D mapping. LOCUS 2.0 includes a novel normals-based Generalized Iterative Closest Point (GICP) formulation that reduces the computation time of point cloud alignment, an adaptive voxel grid filter that maintains the desired computation load regardless of the environment's geometry, and a sliding-window map approach that bounds the memory consumption. The proposed approach is shown to be suitable to be deployed on heterogeneous robotic platforms involved in large-scale explorations under severe computation and memory constraints. We demonstrate LOCUS 2.0, a key element of the CoSTAR team's entry in the DARPA Subterranean Challenge, across various underground scenarios. We release LOCUS 2.0 as an open-source library and also release a lidar-based odometry dataset in challenging and large-scale underground environments. The dataset features legged and wheeled platforms in multiple environments including fog, dust, darkness, and geometrically degenerate surroundings with a total of <inline-formula><tex-math notation="LaTeX">\text{11}\;\text{h}</tex-math></inline-formula> of operations and <inline-formula><tex-math notation="LaTeX">\text{16}\;\text{km}</tex-math></inline-formula> of distance traveled.]]></description><subject>Computational efficiency</subject><subject>Darkness</subject><subject>data sets for SLAM</subject><subject>Datasets</subject><subject>Iterative methods</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Localization method</subject><subject>Loci</subject><subject>Mapping</subject><subject>Memory management</subject><subject>Odometers</subject><subject>Platforms</subject><subject>Point cloud compression</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Robot sensing systems</subject><subject>robotics in under-resourced settings</subject><subject>Robots</subject><subject>Robustness (mathematics)</subject><subject>sensor fusion</subject><subject>SLAM</subject><subject>Three-dimensional displays</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUx4MoOHR3wUvAc2uS1zaNt1HnD6gM5obHkLaJZLRNTbrD_ns7NsTT-z74fB-PD0J3lMSUEvFYrhcxI4zFQHMKKb9AMwacR8Cz7PJfvkbzEHaEEJoyDiKdoa9yVWw_MYvJE167ah9GrPoGF64b9qMaretV2x7w0hhbW92PuLSN8njVuE6P_oCN83itVRttbKcxPOMPNQy2_75FV0a1Qc_P8wZtX5ab4i0qV6_vxaKMaiboGFWpEqZJm4oaTjhTMK2pgQR4nWgjIBWCG5WoymQ1V7oGThKdANBMC8ryGm7Qw-nu4N3PXodR7tzeT08HyTJB8yzJczFR5ETV3oXgtZGDt53yB0mJPBqUk0F5NCjPBqfK_alitdZ_uOACMkLhF6G8al4</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Reinke, Andrzej</creator><creator>Palieri, Matteo</creator><creator>Morrell, Benjamin</creator><creator>Chang, Yun</creator><creator>Ebadi, Kamak</creator><creator>Carlone, Luca</creator><creator>Agha-Mohammadi, Ali-Akbar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6905-200X</orcidid><orcidid>https://orcid.org/0000-0002-2829-5256</orcidid><orcidid>https://orcid.org/0000-0001-8218-3346</orcidid><orcidid>https://orcid.org/0000-0002-4094-7077</orcidid><orcidid>https://orcid.org/0000-0001-5509-1841</orcidid><orcidid>https://orcid.org/0000-0002-9768-3615</orcidid><orcidid>https://orcid.org/0000-0003-1884-5397</orcidid></search><sort><creationdate>20221001</creationdate><title>LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time 3D Mapping</title><author>Reinke, Andrzej ; Palieri, Matteo ; Morrell, Benjamin ; Chang, Yun ; Ebadi, Kamak ; Carlone, Luca ; Agha-Mohammadi, Ali-Akbar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b5a9fd5db1f7072a3a9f5f3437c4ef935997fa4abf6c7aec3704e43316e9128c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational efficiency</topic><topic>Darkness</topic><topic>data sets for SLAM</topic><topic>Datasets</topic><topic>Iterative methods</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Localization method</topic><topic>Loci</topic><topic>Mapping</topic><topic>Memory management</topic><topic>Odometers</topic><topic>Platforms</topic><topic>Point cloud compression</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Robot sensing systems</topic><topic>robotics in under-resourced settings</topic><topic>Robots</topic><topic>Robustness (mathematics)</topic><topic>sensor fusion</topic><topic>SLAM</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reinke, Andrzej</creatorcontrib><creatorcontrib>Palieri, Matteo</creatorcontrib><creatorcontrib>Morrell, Benjamin</creatorcontrib><creatorcontrib>Chang, Yun</creatorcontrib><creatorcontrib>Ebadi, Kamak</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><creatorcontrib>Agha-Mohammadi, Ali-Akbar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reinke, Andrzej</au><au>Palieri, Matteo</au><au>Morrell, Benjamin</au><au>Chang, Yun</au><au>Ebadi, Kamak</au><au>Carlone, Luca</au><au>Agha-Mohammadi, Ali-Akbar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time 3D Mapping</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>7</volume><issue>4</issue><spage>9043</spage><epage>9050</epage><pages>9043-9050</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract><![CDATA[Lidar odometry has attracted considerable attention as a robust localization method for autonomous robots operating in complex GNSS-denied environments. However, achieving reliable and efficient performance on heterogeneous platforms in large-scale environments remains an open challenge due to the limitations of onboard computation and memory resources needed for autonomous operation. In this work, we present LOCUS 2.0, a robust and computationally-efficient lidar odometry system for real-time underground 3D mapping. LOCUS 2.0 includes a novel normals-based Generalized Iterative Closest Point (GICP) formulation that reduces the computation time of point cloud alignment, an adaptive voxel grid filter that maintains the desired computation load regardless of the environment's geometry, and a sliding-window map approach that bounds the memory consumption. The proposed approach is shown to be suitable to be deployed on heterogeneous robotic platforms involved in large-scale explorations under severe computation and memory constraints. We demonstrate LOCUS 2.0, a key element of the CoSTAR team's entry in the DARPA Subterranean Challenge, across various underground scenarios. We release LOCUS 2.0 as an open-source library and also release a lidar-based odometry dataset in challenging and large-scale underground environments. The dataset features legged and wheeled platforms in multiple environments including fog, dust, darkness, and geometrically degenerate surroundings with a total of <inline-formula><tex-math notation="LaTeX">\text{11}\;\text{h}</tex-math></inline-formula> of operations and <inline-formula><tex-math notation="LaTeX">\text{16}\;\text{km}</tex-math></inline-formula> of distance traveled.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2022.3181357</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6905-200X</orcidid><orcidid>https://orcid.org/0000-0002-2829-5256</orcidid><orcidid>https://orcid.org/0000-0001-8218-3346</orcidid><orcidid>https://orcid.org/0000-0002-4094-7077</orcidid><orcidid>https://orcid.org/0000-0001-5509-1841</orcidid><orcidid>https://orcid.org/0000-0002-9768-3615</orcidid><orcidid>https://orcid.org/0000-0003-1884-5397</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2022-10, Vol.7 (4), p.9043-9050
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_9793601
source IEEE Electronic Library (IEL)
subjects Computational efficiency
Darkness
data sets for SLAM
Datasets
Iterative methods
Laser radar
Lidar
Localization method
Loci
Mapping
Memory management
Odometers
Platforms
Point cloud compression
Real time
Real-time systems
Robot sensing systems
robotics in under-resourced settings
Robots
Robustness (mathematics)
sensor fusion
SLAM
Three-dimensional displays
title LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time 3D Mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LOCUS%202.0:%20Robust%20and%20Computationally%20Efficient%20Lidar%20Odometry%20for%20Real-Time%203D%20Mapping&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Reinke,%20Andrzej&rft.date=2022-10-01&rft.volume=7&rft.issue=4&rft.spage=9043&rft.epage=9050&rft.pages=9043-9050&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2022.3181357&rft_dat=%3Cproquest_RIE%3E2691864889%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691864889&rft_id=info:pmid/&rft_ieee_id=9793601&rfr_iscdi=true