Plume Performance of Electrodeless Plasmoid Electromagnetic Propulsion
Electrodeless plasmoid electromagnetic propulsion was recently proposed for robotic and crewed space missions. This electrodeless construction has the potential to solve the existing limitations, such as duration and low efficiency. The rotating magnetic field (RMF) excitation and Lorentz Force acce...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2022-07, Vol.50 (7), p.2138-2146 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2146 |
---|---|
container_issue | 7 |
container_start_page | 2138 |
container_title | IEEE transactions on plasma science |
container_volume | 50 |
creator | Liu, Xixuan Sun, Xinfeng Guo, Ning Wen, Xiaodong |
description | Electrodeless plasmoid electromagnetic propulsion was recently proposed for robotic and crewed space missions. This electrodeless construction has the potential to solve the existing limitations, such as duration and low efficiency. The rotating magnetic field (RMF) excitation and Lorentz Force acceleration mechanism of the plasmoid has the advantage of producing a highly variable thrust and a discrete impulse. In this article, the plume performance of the proposed propulsion primer was presented for the first time and evaluated by varying the RMF input power, bias magnetic field, and flow rate, while the power of the preionization source and discharge propellant are held constant. The RMF excitation and Lorentz Force acceleration mechanism of the plasmoid were confirmed by the plume performance and discharge characteristics. The stable discharge in Ar, N 2 , and Xe demonstrated the potential application of this electrodeless technology in future multipropellant high-power propulsion applications. The phase angle of 90° in the RMF coil was essential for the higher performance of the plasma plume. The propulsion thrust and specific impulse were estimated to be 16.1 mN and 1600 N \cdot s, respectively, at 1.2 kW from the initial test conducted using the Langmuir probe, assuming a complete penetration of RMF in the plasma. |
doi_str_mv | 10.1109/TPS.2022.3175526 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9789442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9789442</ieee_id><sourcerecordid>2691867342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ea585cdd524d84e9beafcda7b1c0a4b1b531d67fc450fce427eed6336885cc5f3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoWKd3wUvBc2d-ts1RxqbCwILzHNLkRTraZibtwf_ejE1PDx7fz_c9PgjdE7wkBMunXfOxpJjSJSOVELS8QBmRTBaSVeISZRhLVrCasGt0E-MeY8IFphnaNP08QN5AcD4MejSQe5evezBT8BZ6iDFveh0H39m_9aC_Rpg6kzfBH-Y-dn68RVdO9xHuznOBPjfr3eq12L6_vK2et4WhkkwFaFELY62g3NYcZAvaGaurlhiseUtawYgtK2fSc84ApxWALRkr64QZ4dgCPZ56D8F_zxAntfdzGNNJRUtJ6rJinKYUPqVM8DEGcOoQukGHH0WwOtpSyZY62lJnWwl5OCEdAPzHZVVLngp_ARLyZ08</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691867342</pqid></control><display><type>article</type><title>Plume Performance of Electrodeless Plasmoid Electromagnetic Propulsion</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xixuan ; Sun, Xinfeng ; Guo, Ning ; Wen, Xiaodong</creator><creatorcontrib>Liu, Xixuan ; Sun, Xinfeng ; Guo, Ning ; Wen, Xiaodong</creatorcontrib><description>Electrodeless plasmoid electromagnetic propulsion was recently proposed for robotic and crewed space missions. This electrodeless construction has the potential to solve the existing limitations, such as duration and low efficiency. The rotating magnetic field (RMF) excitation and Lorentz Force acceleration mechanism of the plasmoid has the advantage of producing a highly variable thrust and a discrete impulse. In this article, the plume performance of the proposed propulsion primer was presented for the first time and evaluated by varying the RMF input power, bias magnetic field, and flow rate, while the power of the preionization source and discharge propellant are held constant. The RMF excitation and Lorentz Force acceleration mechanism of the plasmoid were confirmed by the plume performance and discharge characteristics. The stable discharge in Ar, N 2 , and Xe demonstrated the potential application of this electrodeless technology in future multipropellant high-power propulsion applications. The phase angle of 90° in the RMF coil was essential for the higher performance of the plasma plume. The propulsion thrust and specific impulse were estimated to be 16.1 mN and 1600 N <inline-formula> <tex-math notation="LaTeX">\cdot </tex-math></inline-formula> s, respectively, at 1.2 kW from the initial test conducted using the Langmuir probe, assuming a complete penetration of RMF in the plasma.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2022.3175526</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attitude control ; Coils ; Discharge ; Discharges (electric) ; Electrodeless ; Electromagnetic launching ; Electromagnetic propulsion ; Excitation ; Fault location ; Flow rates ; Flow velocity ; Lorentz covariance ; Lorentz force ; Magnetic fields ; plasma plume ; Plasmas ; plasmoid ; Preionization ; Propulsion ; rotating magnetic field (RMF) ; Space missions ; Specific impulse ; Thrust ; Variable thrust</subject><ispartof>IEEE transactions on plasma science, 2022-07, Vol.50 (7), p.2138-2146</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-ea585cdd524d84e9beafcda7b1c0a4b1b531d67fc450fce427eed6336885cc5f3</citedby><cites>FETCH-LOGICAL-c291t-ea585cdd524d84e9beafcda7b1c0a4b1b531d67fc450fce427eed6336885cc5f3</cites><orcidid>0000-0003-1194-7606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9789442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9789442$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Xixuan</creatorcontrib><creatorcontrib>Sun, Xinfeng</creatorcontrib><creatorcontrib>Guo, Ning</creatorcontrib><creatorcontrib>Wen, Xiaodong</creatorcontrib><title>Plume Performance of Electrodeless Plasmoid Electromagnetic Propulsion</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Electrodeless plasmoid electromagnetic propulsion was recently proposed for robotic and crewed space missions. This electrodeless construction has the potential to solve the existing limitations, such as duration and low efficiency. The rotating magnetic field (RMF) excitation and Lorentz Force acceleration mechanism of the plasmoid has the advantage of producing a highly variable thrust and a discrete impulse. In this article, the plume performance of the proposed propulsion primer was presented for the first time and evaluated by varying the RMF input power, bias magnetic field, and flow rate, while the power of the preionization source and discharge propellant are held constant. The RMF excitation and Lorentz Force acceleration mechanism of the plasmoid were confirmed by the plume performance and discharge characteristics. The stable discharge in Ar, N 2 , and Xe demonstrated the potential application of this electrodeless technology in future multipropellant high-power propulsion applications. The phase angle of 90° in the RMF coil was essential for the higher performance of the plasma plume. The propulsion thrust and specific impulse were estimated to be 16.1 mN and 1600 N <inline-formula> <tex-math notation="LaTeX">\cdot </tex-math></inline-formula> s, respectively, at 1.2 kW from the initial test conducted using the Langmuir probe, assuming a complete penetration of RMF in the plasma.</description><subject>Attitude control</subject><subject>Coils</subject><subject>Discharge</subject><subject>Discharges (electric)</subject><subject>Electrodeless</subject><subject>Electromagnetic launching</subject><subject>Electromagnetic propulsion</subject><subject>Excitation</subject><subject>Fault location</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Lorentz covariance</subject><subject>Lorentz force</subject><subject>Magnetic fields</subject><subject>plasma plume</subject><subject>Plasmas</subject><subject>plasmoid</subject><subject>Preionization</subject><subject>Propulsion</subject><subject>rotating magnetic field (RMF)</subject><subject>Space missions</subject><subject>Specific impulse</subject><subject>Thrust</subject><subject>Variable thrust</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUx4MoWKd3wUvBc2d-ts1RxqbCwILzHNLkRTraZibtwf_ejE1PDx7fz_c9PgjdE7wkBMunXfOxpJjSJSOVELS8QBmRTBaSVeISZRhLVrCasGt0E-MeY8IFphnaNP08QN5AcD4MejSQe5evezBT8BZ6iDFveh0H39m_9aC_Rpg6kzfBH-Y-dn68RVdO9xHuznOBPjfr3eq12L6_vK2et4WhkkwFaFELY62g3NYcZAvaGaurlhiseUtawYgtK2fSc84ApxWALRkr64QZ4dgCPZ56D8F_zxAntfdzGNNJRUtJ6rJinKYUPqVM8DEGcOoQukGHH0WwOtpSyZY62lJnWwl5OCEdAPzHZVVLngp_ARLyZ08</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Liu, Xixuan</creator><creator>Sun, Xinfeng</creator><creator>Guo, Ning</creator><creator>Wen, Xiaodong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1194-7606</orcidid></search><sort><creationdate>20220701</creationdate><title>Plume Performance of Electrodeless Plasmoid Electromagnetic Propulsion</title><author>Liu, Xixuan ; Sun, Xinfeng ; Guo, Ning ; Wen, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ea585cdd524d84e9beafcda7b1c0a4b1b531d67fc450fce427eed6336885cc5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attitude control</topic><topic>Coils</topic><topic>Discharge</topic><topic>Discharges (electric)</topic><topic>Electrodeless</topic><topic>Electromagnetic launching</topic><topic>Electromagnetic propulsion</topic><topic>Excitation</topic><topic>Fault location</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Lorentz covariance</topic><topic>Lorentz force</topic><topic>Magnetic fields</topic><topic>plasma plume</topic><topic>Plasmas</topic><topic>plasmoid</topic><topic>Preionization</topic><topic>Propulsion</topic><topic>rotating magnetic field (RMF)</topic><topic>Space missions</topic><topic>Specific impulse</topic><topic>Thrust</topic><topic>Variable thrust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xixuan</creatorcontrib><creatorcontrib>Sun, Xinfeng</creatorcontrib><creatorcontrib>Guo, Ning</creatorcontrib><creatorcontrib>Wen, Xiaodong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xixuan</au><au>Sun, Xinfeng</au><au>Guo, Ning</au><au>Wen, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plume Performance of Electrodeless Plasmoid Electromagnetic Propulsion</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>50</volume><issue>7</issue><spage>2138</spage><epage>2146</epage><pages>2138-2146</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Electrodeless plasmoid electromagnetic propulsion was recently proposed for robotic and crewed space missions. This electrodeless construction has the potential to solve the existing limitations, such as duration and low efficiency. The rotating magnetic field (RMF) excitation and Lorentz Force acceleration mechanism of the plasmoid has the advantage of producing a highly variable thrust and a discrete impulse. In this article, the plume performance of the proposed propulsion primer was presented for the first time and evaluated by varying the RMF input power, bias magnetic field, and flow rate, while the power of the preionization source and discharge propellant are held constant. The RMF excitation and Lorentz Force acceleration mechanism of the plasmoid were confirmed by the plume performance and discharge characteristics. The stable discharge in Ar, N 2 , and Xe demonstrated the potential application of this electrodeless technology in future multipropellant high-power propulsion applications. The phase angle of 90° in the RMF coil was essential for the higher performance of the plasma plume. The propulsion thrust and specific impulse were estimated to be 16.1 mN and 1600 N <inline-formula> <tex-math notation="LaTeX">\cdot </tex-math></inline-formula> s, respectively, at 1.2 kW from the initial test conducted using the Langmuir probe, assuming a complete penetration of RMF in the plasma.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2022.3175526</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1194-7606</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2022-07, Vol.50 (7), p.2138-2146 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_ieee_primary_9789442 |
source | IEEE Electronic Library (IEL) |
subjects | Attitude control Coils Discharge Discharges (electric) Electrodeless Electromagnetic launching Electromagnetic propulsion Excitation Fault location Flow rates Flow velocity Lorentz covariance Lorentz force Magnetic fields plasma plume Plasmas plasmoid Preionization Propulsion rotating magnetic field (RMF) Space missions Specific impulse Thrust Variable thrust |
title | Plume Performance of Electrodeless Plasmoid Electromagnetic Propulsion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plume%20Performance%20of%20Electrodeless%20Plasmoid%20Electromagnetic%20Propulsion&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Liu,%20Xixuan&rft.date=2022-07-01&rft.volume=50&rft.issue=7&rft.spage=2138&rft.epage=2146&rft.pages=2138-2146&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2022.3175526&rft_dat=%3Cproquest_RIE%3E2691867342%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691867342&rft_id=info:pmid/&rft_ieee_id=9789442&rfr_iscdi=true |