Plume Performance of Electrodeless Plasmoid Electromagnetic Propulsion

Electrodeless plasmoid electromagnetic propulsion was recently proposed for robotic and crewed space missions. This electrodeless construction has the potential to solve the existing limitations, such as duration and low efficiency. The rotating magnetic field (RMF) excitation and Lorentz Force acce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2022-07, Vol.50 (7), p.2138-2146
Hauptverfasser: Liu, Xixuan, Sun, Xinfeng, Guo, Ning, Wen, Xiaodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2146
container_issue 7
container_start_page 2138
container_title IEEE transactions on plasma science
container_volume 50
creator Liu, Xixuan
Sun, Xinfeng
Guo, Ning
Wen, Xiaodong
description Electrodeless plasmoid electromagnetic propulsion was recently proposed for robotic and crewed space missions. This electrodeless construction has the potential to solve the existing limitations, such as duration and low efficiency. The rotating magnetic field (RMF) excitation and Lorentz Force acceleration mechanism of the plasmoid has the advantage of producing a highly variable thrust and a discrete impulse. In this article, the plume performance of the proposed propulsion primer was presented for the first time and evaluated by varying the RMF input power, bias magnetic field, and flow rate, while the power of the preionization source and discharge propellant are held constant. The RMF excitation and Lorentz Force acceleration mechanism of the plasmoid were confirmed by the plume performance and discharge characteristics. The stable discharge in Ar, N 2 , and Xe demonstrated the potential application of this electrodeless technology in future multipropellant high-power propulsion applications. The phase angle of 90° in the RMF coil was essential for the higher performance of the plasma plume. The propulsion thrust and specific impulse were estimated to be 16.1 mN and 1600 N \cdot s, respectively, at 1.2 kW from the initial test conducted using the Langmuir probe, assuming a complete penetration of RMF in the plasma.
doi_str_mv 10.1109/TPS.2022.3175526
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9789442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9789442</ieee_id><sourcerecordid>2691867342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ea585cdd524d84e9beafcda7b1c0a4b1b531d67fc450fce427eed6336885cc5f3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoWKd3wUvBc2d-ts1RxqbCwILzHNLkRTraZibtwf_ejE1PDx7fz_c9PgjdE7wkBMunXfOxpJjSJSOVELS8QBmRTBaSVeISZRhLVrCasGt0E-MeY8IFphnaNP08QN5AcD4MejSQe5evezBT8BZ6iDFveh0H39m_9aC_Rpg6kzfBH-Y-dn68RVdO9xHuznOBPjfr3eq12L6_vK2et4WhkkwFaFELY62g3NYcZAvaGaurlhiseUtawYgtK2fSc84ApxWALRkr64QZ4dgCPZ56D8F_zxAntfdzGNNJRUtJ6rJinKYUPqVM8DEGcOoQukGHH0WwOtpSyZY62lJnWwl5OCEdAPzHZVVLngp_ARLyZ08</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691867342</pqid></control><display><type>article</type><title>Plume Performance of Electrodeless Plasmoid Electromagnetic Propulsion</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xixuan ; Sun, Xinfeng ; Guo, Ning ; Wen, Xiaodong</creator><creatorcontrib>Liu, Xixuan ; Sun, Xinfeng ; Guo, Ning ; Wen, Xiaodong</creatorcontrib><description>Electrodeless plasmoid electromagnetic propulsion was recently proposed for robotic and crewed space missions. This electrodeless construction has the potential to solve the existing limitations, such as duration and low efficiency. The rotating magnetic field (RMF) excitation and Lorentz Force acceleration mechanism of the plasmoid has the advantage of producing a highly variable thrust and a discrete impulse. In this article, the plume performance of the proposed propulsion primer was presented for the first time and evaluated by varying the RMF input power, bias magnetic field, and flow rate, while the power of the preionization source and discharge propellant are held constant. The RMF excitation and Lorentz Force acceleration mechanism of the plasmoid were confirmed by the plume performance and discharge characteristics. The stable discharge in Ar, N 2 , and Xe demonstrated the potential application of this electrodeless technology in future multipropellant high-power propulsion applications. The phase angle of 90° in the RMF coil was essential for the higher performance of the plasma plume. The propulsion thrust and specific impulse were estimated to be 16.1 mN and 1600 N &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\cdot &lt;/tex-math&gt;&lt;/inline-formula&gt; s, respectively, at 1.2 kW from the initial test conducted using the Langmuir probe, assuming a complete penetration of RMF in the plasma.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2022.3175526</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attitude control ; Coils ; Discharge ; Discharges (electric) ; Electrodeless ; Electromagnetic launching ; Electromagnetic propulsion ; Excitation ; Fault location ; Flow rates ; Flow velocity ; Lorentz covariance ; Lorentz force ; Magnetic fields ; plasma plume ; Plasmas ; plasmoid ; Preionization ; Propulsion ; rotating magnetic field (RMF) ; Space missions ; Specific impulse ; Thrust ; Variable thrust</subject><ispartof>IEEE transactions on plasma science, 2022-07, Vol.50 (7), p.2138-2146</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-ea585cdd524d84e9beafcda7b1c0a4b1b531d67fc450fce427eed6336885cc5f3</citedby><cites>FETCH-LOGICAL-c291t-ea585cdd524d84e9beafcda7b1c0a4b1b531d67fc450fce427eed6336885cc5f3</cites><orcidid>0000-0003-1194-7606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9789442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9789442$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Xixuan</creatorcontrib><creatorcontrib>Sun, Xinfeng</creatorcontrib><creatorcontrib>Guo, Ning</creatorcontrib><creatorcontrib>Wen, Xiaodong</creatorcontrib><title>Plume Performance of Electrodeless Plasmoid Electromagnetic Propulsion</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Electrodeless plasmoid electromagnetic propulsion was recently proposed for robotic and crewed space missions. This electrodeless construction has the potential to solve the existing limitations, such as duration and low efficiency. The rotating magnetic field (RMF) excitation and Lorentz Force acceleration mechanism of the plasmoid has the advantage of producing a highly variable thrust and a discrete impulse. In this article, the plume performance of the proposed propulsion primer was presented for the first time and evaluated by varying the RMF input power, bias magnetic field, and flow rate, while the power of the preionization source and discharge propellant are held constant. The RMF excitation and Lorentz Force acceleration mechanism of the plasmoid were confirmed by the plume performance and discharge characteristics. The stable discharge in Ar, N 2 , and Xe demonstrated the potential application of this electrodeless technology in future multipropellant high-power propulsion applications. The phase angle of 90° in the RMF coil was essential for the higher performance of the plasma plume. The propulsion thrust and specific impulse were estimated to be 16.1 mN and 1600 N &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\cdot &lt;/tex-math&gt;&lt;/inline-formula&gt; s, respectively, at 1.2 kW from the initial test conducted using the Langmuir probe, assuming a complete penetration of RMF in the plasma.</description><subject>Attitude control</subject><subject>Coils</subject><subject>Discharge</subject><subject>Discharges (electric)</subject><subject>Electrodeless</subject><subject>Electromagnetic launching</subject><subject>Electromagnetic propulsion</subject><subject>Excitation</subject><subject>Fault location</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Lorentz covariance</subject><subject>Lorentz force</subject><subject>Magnetic fields</subject><subject>plasma plume</subject><subject>Plasmas</subject><subject>plasmoid</subject><subject>Preionization</subject><subject>Propulsion</subject><subject>rotating magnetic field (RMF)</subject><subject>Space missions</subject><subject>Specific impulse</subject><subject>Thrust</subject><subject>Variable thrust</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUx4MoWKd3wUvBc2d-ts1RxqbCwILzHNLkRTraZibtwf_ejE1PDx7fz_c9PgjdE7wkBMunXfOxpJjSJSOVELS8QBmRTBaSVeISZRhLVrCasGt0E-MeY8IFphnaNP08QN5AcD4MejSQe5evezBT8BZ6iDFveh0H39m_9aC_Rpg6kzfBH-Y-dn68RVdO9xHuznOBPjfr3eq12L6_vK2et4WhkkwFaFELY62g3NYcZAvaGaurlhiseUtawYgtK2fSc84ApxWALRkr64QZ4dgCPZ56D8F_zxAntfdzGNNJRUtJ6rJinKYUPqVM8DEGcOoQukGHH0WwOtpSyZY62lJnWwl5OCEdAPzHZVVLngp_ARLyZ08</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Liu, Xixuan</creator><creator>Sun, Xinfeng</creator><creator>Guo, Ning</creator><creator>Wen, Xiaodong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1194-7606</orcidid></search><sort><creationdate>20220701</creationdate><title>Plume Performance of Electrodeless Plasmoid Electromagnetic Propulsion</title><author>Liu, Xixuan ; Sun, Xinfeng ; Guo, Ning ; Wen, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ea585cdd524d84e9beafcda7b1c0a4b1b531d67fc450fce427eed6336885cc5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attitude control</topic><topic>Coils</topic><topic>Discharge</topic><topic>Discharges (electric)</topic><topic>Electrodeless</topic><topic>Electromagnetic launching</topic><topic>Electromagnetic propulsion</topic><topic>Excitation</topic><topic>Fault location</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Lorentz covariance</topic><topic>Lorentz force</topic><topic>Magnetic fields</topic><topic>plasma plume</topic><topic>Plasmas</topic><topic>plasmoid</topic><topic>Preionization</topic><topic>Propulsion</topic><topic>rotating magnetic field (RMF)</topic><topic>Space missions</topic><topic>Specific impulse</topic><topic>Thrust</topic><topic>Variable thrust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xixuan</creatorcontrib><creatorcontrib>Sun, Xinfeng</creatorcontrib><creatorcontrib>Guo, Ning</creatorcontrib><creatorcontrib>Wen, Xiaodong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xixuan</au><au>Sun, Xinfeng</au><au>Guo, Ning</au><au>Wen, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plume Performance of Electrodeless Plasmoid Electromagnetic Propulsion</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>50</volume><issue>7</issue><spage>2138</spage><epage>2146</epage><pages>2138-2146</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Electrodeless plasmoid electromagnetic propulsion was recently proposed for robotic and crewed space missions. This electrodeless construction has the potential to solve the existing limitations, such as duration and low efficiency. The rotating magnetic field (RMF) excitation and Lorentz Force acceleration mechanism of the plasmoid has the advantage of producing a highly variable thrust and a discrete impulse. In this article, the plume performance of the proposed propulsion primer was presented for the first time and evaluated by varying the RMF input power, bias magnetic field, and flow rate, while the power of the preionization source and discharge propellant are held constant. The RMF excitation and Lorentz Force acceleration mechanism of the plasmoid were confirmed by the plume performance and discharge characteristics. The stable discharge in Ar, N 2 , and Xe demonstrated the potential application of this electrodeless technology in future multipropellant high-power propulsion applications. The phase angle of 90° in the RMF coil was essential for the higher performance of the plasma plume. The propulsion thrust and specific impulse were estimated to be 16.1 mN and 1600 N &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\cdot &lt;/tex-math&gt;&lt;/inline-formula&gt; s, respectively, at 1.2 kW from the initial test conducted using the Langmuir probe, assuming a complete penetration of RMF in the plasma.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2022.3175526</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1194-7606</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2022-07, Vol.50 (7), p.2138-2146
issn 0093-3813
1939-9375
language eng
recordid cdi_ieee_primary_9789442
source IEEE Electronic Library (IEL)
subjects Attitude control
Coils
Discharge
Discharges (electric)
Electrodeless
Electromagnetic launching
Electromagnetic propulsion
Excitation
Fault location
Flow rates
Flow velocity
Lorentz covariance
Lorentz force
Magnetic fields
plasma plume
Plasmas
plasmoid
Preionization
Propulsion
rotating magnetic field (RMF)
Space missions
Specific impulse
Thrust
Variable thrust
title Plume Performance of Electrodeless Plasmoid Electromagnetic Propulsion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plume%20Performance%20of%20Electrodeless%20Plasmoid%20Electromagnetic%20Propulsion&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Liu,%20Xixuan&rft.date=2022-07-01&rft.volume=50&rft.issue=7&rft.spage=2138&rft.epage=2146&rft.pages=2138-2146&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2022.3175526&rft_dat=%3Cproquest_RIE%3E2691867342%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691867342&rft_id=info:pmid/&rft_ieee_id=9789442&rfr_iscdi=true