Cyclic Connectivity Status of Fuzzy Graphs
Network theory has a big role in driving fields like communication, e-commerce, and internet. There are several graph theoretical structures to represent natural and man-made networks. Stability and connectivity are two major factors associated with networks. A fuzzy graph is an effective representa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on fuzzy systems 2022-12, Vol.30 (12), p.5526-5533 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5533 |
---|---|
container_issue | 12 |
container_start_page | 5526 |
container_title | IEEE transactions on fuzzy systems |
container_volume | 30 |
creator | Binu, M Mathew, Sunil Mordeson, John N. |
description | Network theory has a big role in driving fields like communication, e-commerce, and internet. There are several graph theoretical structures to represent natural and man-made networks. Stability and connectivity are two major factors associated with networks. A fuzzy graph is an effective representation for a weight normalized network. Different connectivity parameters in fuzzy graphs can be used to find stability and optimum flow in a network. In this article, we discuss cyclic connectivity, one of the major parameter that is closely related with cyclic reachability within a normalized network. Cyclic connectivity status and cyclic status sequence associated with a fuzzy graph are discussed. A classification of vertices of a network based on the cyclic connectivity status is given. Algorithms related to the topic along with their illustration are presented. Scope and significance of this parameter are presented with the help of real-life applications. |
doi_str_mv | 10.1109/TFUZZ.2022.3179778 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9786749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9786749</ieee_id><sourcerecordid>2742703983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-cbd373681476d3601110ba63e0b7ce07ee57a921c94a758ca90ace76bc7795123</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsvoJcFb8LWmSSb2RxlsVUoeLC99BKyaYpbarcmu8L26bu1xdPM4f_-GT7G7hFGiKCfZ-P5YjHiwPlIIGmi_IINUEtMAYS87HdQIlUE6prdxLgGQJlhPmBPRec2lUuKerv1rql-q6ZLPhvbtDGpV8m43e-7ZBLs7ivesquV3UR_d55DNh-_zoq3dPoxeS9epqnjPGtSVy4FCZWjJLUUCrB_sLRKeCjJeSDvM7Kao9PSUpY7q8E6T6p0RDpDLobs8dS7C_VP62Nj1nUbtv1Jw0lyAqFz0af4KeVCHWPwK7ML1bcNnUEwRyfmz4k5OjFnJz30cIIq7_0_oClXJLU4ADcrW90</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742703983</pqid></control><display><type>article</type><title>Cyclic Connectivity Status of Fuzzy Graphs</title><source>IEEE Electronic Library (IEL)</source><creator>Binu, M ; Mathew, Sunil ; Mordeson, John N.</creator><creatorcontrib>Binu, M ; Mathew, Sunil ; Mordeson, John N.</creatorcontrib><description>Network theory has a big role in driving fields like communication, e-commerce, and internet. There are several graph theoretical structures to represent natural and man-made networks. Stability and connectivity are two major factors associated with networks. A fuzzy graph is an effective representation for a weight normalized network. Different connectivity parameters in fuzzy graphs can be used to find stability and optimum flow in a network. In this article, we discuss cyclic connectivity, one of the major parameter that is closely related with cyclic reachability within a normalized network. Cyclic connectivity status and cyclic status sequence associated with a fuzzy graph are discussed. A classification of vertices of a network based on the cyclic connectivity status is given. Algorithms related to the topic along with their illustration are presented. Scope and significance of this parameter are presented with the help of real-life applications.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2022.3179778</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Apexes ; Cyclic connectivity status (CCS) ; cyclic status sequence (CSS) ; Electronic commerce ; Fault tolerant systems ; Finite element analysis ; Flow stability ; fuzzy graph ; Fuzzy sets ; Graph theory ; Graphical representations ; Graphs ; Human factors ; human trafficking ; Internet ; Network theory (graphs) ; Parameters ; Stability analysis</subject><ispartof>IEEE transactions on fuzzy systems, 2022-12, Vol.30 (12), p.5526-5533</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-cbd373681476d3601110ba63e0b7ce07ee57a921c94a758ca90ace76bc7795123</citedby><cites>FETCH-LOGICAL-c225t-cbd373681476d3601110ba63e0b7ce07ee57a921c94a758ca90ace76bc7795123</cites><orcidid>0000-0001-8478-9245 ; 0000-0002-4133-3560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9786749$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9786749$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Binu, M</creatorcontrib><creatorcontrib>Mathew, Sunil</creatorcontrib><creatorcontrib>Mordeson, John N.</creatorcontrib><title>Cyclic Connectivity Status of Fuzzy Graphs</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>Network theory has a big role in driving fields like communication, e-commerce, and internet. There are several graph theoretical structures to represent natural and man-made networks. Stability and connectivity are two major factors associated with networks. A fuzzy graph is an effective representation for a weight normalized network. Different connectivity parameters in fuzzy graphs can be used to find stability and optimum flow in a network. In this article, we discuss cyclic connectivity, one of the major parameter that is closely related with cyclic reachability within a normalized network. Cyclic connectivity status and cyclic status sequence associated with a fuzzy graph are discussed. A classification of vertices of a network based on the cyclic connectivity status is given. Algorithms related to the topic along with their illustration are presented. Scope and significance of this parameter are presented with the help of real-life applications.</description><subject>Algorithms</subject><subject>Apexes</subject><subject>Cyclic connectivity status (CCS)</subject><subject>cyclic status sequence (CSS)</subject><subject>Electronic commerce</subject><subject>Fault tolerant systems</subject><subject>Finite element analysis</subject><subject>Flow stability</subject><subject>fuzzy graph</subject><subject>Fuzzy sets</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Graphs</subject><subject>Human factors</subject><subject>human trafficking</subject><subject>Internet</subject><subject>Network theory (graphs)</subject><subject>Parameters</subject><subject>Stability analysis</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWKsvoJcFb8LWmSSb2RxlsVUoeLC99BKyaYpbarcmu8L26bu1xdPM4f_-GT7G7hFGiKCfZ-P5YjHiwPlIIGmi_IINUEtMAYS87HdQIlUE6prdxLgGQJlhPmBPRec2lUuKerv1rql-q6ZLPhvbtDGpV8m43e-7ZBLs7ivesquV3UR_d55DNh-_zoq3dPoxeS9epqnjPGtSVy4FCZWjJLUUCrB_sLRKeCjJeSDvM7Kao9PSUpY7q8E6T6p0RDpDLobs8dS7C_VP62Nj1nUbtv1Jw0lyAqFz0af4KeVCHWPwK7ML1bcNnUEwRyfmz4k5OjFnJz30cIIq7_0_oClXJLU4ADcrW90</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Binu, M</creator><creator>Mathew, Sunil</creator><creator>Mordeson, John N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8478-9245</orcidid><orcidid>https://orcid.org/0000-0002-4133-3560</orcidid></search><sort><creationdate>20221201</creationdate><title>Cyclic Connectivity Status of Fuzzy Graphs</title><author>Binu, M ; Mathew, Sunil ; Mordeson, John N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-cbd373681476d3601110ba63e0b7ce07ee57a921c94a758ca90ace76bc7795123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>Cyclic connectivity status (CCS)</topic><topic>cyclic status sequence (CSS)</topic><topic>Electronic commerce</topic><topic>Fault tolerant systems</topic><topic>Finite element analysis</topic><topic>Flow stability</topic><topic>fuzzy graph</topic><topic>Fuzzy sets</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Graphs</topic><topic>Human factors</topic><topic>human trafficking</topic><topic>Internet</topic><topic>Network theory (graphs)</topic><topic>Parameters</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binu, M</creatorcontrib><creatorcontrib>Mathew, Sunil</creatorcontrib><creatorcontrib>Mordeson, John N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Binu, M</au><au>Mathew, Sunil</au><au>Mordeson, John N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclic Connectivity Status of Fuzzy Graphs</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>30</volume><issue>12</issue><spage>5526</spage><epage>5533</epage><pages>5526-5533</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>Network theory has a big role in driving fields like communication, e-commerce, and internet. There are several graph theoretical structures to represent natural and man-made networks. Stability and connectivity are two major factors associated with networks. A fuzzy graph is an effective representation for a weight normalized network. Different connectivity parameters in fuzzy graphs can be used to find stability and optimum flow in a network. In this article, we discuss cyclic connectivity, one of the major parameter that is closely related with cyclic reachability within a normalized network. Cyclic connectivity status and cyclic status sequence associated with a fuzzy graph are discussed. A classification of vertices of a network based on the cyclic connectivity status is given. Algorithms related to the topic along with their illustration are presented. Scope and significance of this parameter are presented with the help of real-life applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2022.3179778</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8478-9245</orcidid><orcidid>https://orcid.org/0000-0002-4133-3560</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6706 |
ispartof | IEEE transactions on fuzzy systems, 2022-12, Vol.30 (12), p.5526-5533 |
issn | 1063-6706 1941-0034 |
language | eng |
recordid | cdi_ieee_primary_9786749 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Apexes Cyclic connectivity status (CCS) cyclic status sequence (CSS) Electronic commerce Fault tolerant systems Finite element analysis Flow stability fuzzy graph Fuzzy sets Graph theory Graphical representations Graphs Human factors human trafficking Internet Network theory (graphs) Parameters Stability analysis |
title | Cyclic Connectivity Status of Fuzzy Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclic%20Connectivity%20Status%20of%20Fuzzy%20Graphs&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Binu,%20M&rft.date=2022-12-01&rft.volume=30&rft.issue=12&rft.spage=5526&rft.epage=5533&rft.pages=5526-5533&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2022.3179778&rft_dat=%3Cproquest_RIE%3E2742703983%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742703983&rft_id=info:pmid/&rft_ieee_id=9786749&rfr_iscdi=true |