Cyclic Connectivity Status of Fuzzy Graphs

Network theory has a big role in driving fields like communication, e-commerce, and internet. There are several graph theoretical structures to represent natural and man-made networks. Stability and connectivity are two major factors associated with networks. A fuzzy graph is an effective representa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2022-12, Vol.30 (12), p.5526-5533
Hauptverfasser: Binu, M, Mathew, Sunil, Mordeson, John N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5533
container_issue 12
container_start_page 5526
container_title IEEE transactions on fuzzy systems
container_volume 30
creator Binu, M
Mathew, Sunil
Mordeson, John N.
description Network theory has a big role in driving fields like communication, e-commerce, and internet. There are several graph theoretical structures to represent natural and man-made networks. Stability and connectivity are two major factors associated with networks. A fuzzy graph is an effective representation for a weight normalized network. Different connectivity parameters in fuzzy graphs can be used to find stability and optimum flow in a network. In this article, we discuss cyclic connectivity, one of the major parameter that is closely related with cyclic reachability within a normalized network. Cyclic connectivity status and cyclic status sequence associated with a fuzzy graph are discussed. A classification of vertices of a network based on the cyclic connectivity status is given. Algorithms related to the topic along with their illustration are presented. Scope and significance of this parameter are presented with the help of real-life applications.
doi_str_mv 10.1109/TFUZZ.2022.3179778
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9786749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9786749</ieee_id><sourcerecordid>2742703983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-cbd373681476d3601110ba63e0b7ce07ee57a921c94a758ca90ace76bc7795123</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsvoJcFb8LWmSSb2RxlsVUoeLC99BKyaYpbarcmu8L26bu1xdPM4f_-GT7G7hFGiKCfZ-P5YjHiwPlIIGmi_IINUEtMAYS87HdQIlUE6prdxLgGQJlhPmBPRec2lUuKerv1rql-q6ZLPhvbtDGpV8m43e-7ZBLs7ivesquV3UR_d55DNh-_zoq3dPoxeS9epqnjPGtSVy4FCZWjJLUUCrB_sLRKeCjJeSDvM7Kao9PSUpY7q8E6T6p0RDpDLobs8dS7C_VP62Nj1nUbtv1Jw0lyAqFz0af4KeVCHWPwK7ML1bcNnUEwRyfmz4k5OjFnJz30cIIq7_0_oClXJLU4ADcrW90</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742703983</pqid></control><display><type>article</type><title>Cyclic Connectivity Status of Fuzzy Graphs</title><source>IEEE Electronic Library (IEL)</source><creator>Binu, M ; Mathew, Sunil ; Mordeson, John N.</creator><creatorcontrib>Binu, M ; Mathew, Sunil ; Mordeson, John N.</creatorcontrib><description>Network theory has a big role in driving fields like communication, e-commerce, and internet. There are several graph theoretical structures to represent natural and man-made networks. Stability and connectivity are two major factors associated with networks. A fuzzy graph is an effective representation for a weight normalized network. Different connectivity parameters in fuzzy graphs can be used to find stability and optimum flow in a network. In this article, we discuss cyclic connectivity, one of the major parameter that is closely related with cyclic reachability within a normalized network. Cyclic connectivity status and cyclic status sequence associated with a fuzzy graph are discussed. A classification of vertices of a network based on the cyclic connectivity status is given. Algorithms related to the topic along with their illustration are presented. Scope and significance of this parameter are presented with the help of real-life applications.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2022.3179778</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Apexes ; Cyclic connectivity status (CCS) ; cyclic status sequence (CSS) ; Electronic commerce ; Fault tolerant systems ; Finite element analysis ; Flow stability ; fuzzy graph ; Fuzzy sets ; Graph theory ; Graphical representations ; Graphs ; Human factors ; human trafficking ; Internet ; Network theory (graphs) ; Parameters ; Stability analysis</subject><ispartof>IEEE transactions on fuzzy systems, 2022-12, Vol.30 (12), p.5526-5533</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-cbd373681476d3601110ba63e0b7ce07ee57a921c94a758ca90ace76bc7795123</citedby><cites>FETCH-LOGICAL-c225t-cbd373681476d3601110ba63e0b7ce07ee57a921c94a758ca90ace76bc7795123</cites><orcidid>0000-0001-8478-9245 ; 0000-0002-4133-3560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9786749$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9786749$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Binu, M</creatorcontrib><creatorcontrib>Mathew, Sunil</creatorcontrib><creatorcontrib>Mordeson, John N.</creatorcontrib><title>Cyclic Connectivity Status of Fuzzy Graphs</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>Network theory has a big role in driving fields like communication, e-commerce, and internet. There are several graph theoretical structures to represent natural and man-made networks. Stability and connectivity are two major factors associated with networks. A fuzzy graph is an effective representation for a weight normalized network. Different connectivity parameters in fuzzy graphs can be used to find stability and optimum flow in a network. In this article, we discuss cyclic connectivity, one of the major parameter that is closely related with cyclic reachability within a normalized network. Cyclic connectivity status and cyclic status sequence associated with a fuzzy graph are discussed. A classification of vertices of a network based on the cyclic connectivity status is given. Algorithms related to the topic along with their illustration are presented. Scope and significance of this parameter are presented with the help of real-life applications.</description><subject>Algorithms</subject><subject>Apexes</subject><subject>Cyclic connectivity status (CCS)</subject><subject>cyclic status sequence (CSS)</subject><subject>Electronic commerce</subject><subject>Fault tolerant systems</subject><subject>Finite element analysis</subject><subject>Flow stability</subject><subject>fuzzy graph</subject><subject>Fuzzy sets</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Graphs</subject><subject>Human factors</subject><subject>human trafficking</subject><subject>Internet</subject><subject>Network theory (graphs)</subject><subject>Parameters</subject><subject>Stability analysis</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWKsvoJcFb8LWmSSb2RxlsVUoeLC99BKyaYpbarcmu8L26bu1xdPM4f_-GT7G7hFGiKCfZ-P5YjHiwPlIIGmi_IINUEtMAYS87HdQIlUE6prdxLgGQJlhPmBPRec2lUuKerv1rql-q6ZLPhvbtDGpV8m43e-7ZBLs7ivesquV3UR_d55DNh-_zoq3dPoxeS9epqnjPGtSVy4FCZWjJLUUCrB_sLRKeCjJeSDvM7Kao9PSUpY7q8E6T6p0RDpDLobs8dS7C_VP62Nj1nUbtv1Jw0lyAqFz0af4KeVCHWPwK7ML1bcNnUEwRyfmz4k5OjFnJz30cIIq7_0_oClXJLU4ADcrW90</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Binu, M</creator><creator>Mathew, Sunil</creator><creator>Mordeson, John N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8478-9245</orcidid><orcidid>https://orcid.org/0000-0002-4133-3560</orcidid></search><sort><creationdate>20221201</creationdate><title>Cyclic Connectivity Status of Fuzzy Graphs</title><author>Binu, M ; Mathew, Sunil ; Mordeson, John N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-cbd373681476d3601110ba63e0b7ce07ee57a921c94a758ca90ace76bc7795123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>Cyclic connectivity status (CCS)</topic><topic>cyclic status sequence (CSS)</topic><topic>Electronic commerce</topic><topic>Fault tolerant systems</topic><topic>Finite element analysis</topic><topic>Flow stability</topic><topic>fuzzy graph</topic><topic>Fuzzy sets</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Graphs</topic><topic>Human factors</topic><topic>human trafficking</topic><topic>Internet</topic><topic>Network theory (graphs)</topic><topic>Parameters</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binu, M</creatorcontrib><creatorcontrib>Mathew, Sunil</creatorcontrib><creatorcontrib>Mordeson, John N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Binu, M</au><au>Mathew, Sunil</au><au>Mordeson, John N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclic Connectivity Status of Fuzzy Graphs</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>30</volume><issue>12</issue><spage>5526</spage><epage>5533</epage><pages>5526-5533</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>Network theory has a big role in driving fields like communication, e-commerce, and internet. There are several graph theoretical structures to represent natural and man-made networks. Stability and connectivity are two major factors associated with networks. A fuzzy graph is an effective representation for a weight normalized network. Different connectivity parameters in fuzzy graphs can be used to find stability and optimum flow in a network. In this article, we discuss cyclic connectivity, one of the major parameter that is closely related with cyclic reachability within a normalized network. Cyclic connectivity status and cyclic status sequence associated with a fuzzy graph are discussed. A classification of vertices of a network based on the cyclic connectivity status is given. Algorithms related to the topic along with their illustration are presented. Scope and significance of this parameter are presented with the help of real-life applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2022.3179778</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8478-9245</orcidid><orcidid>https://orcid.org/0000-0002-4133-3560</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2022-12, Vol.30 (12), p.5526-5533
issn 1063-6706
1941-0034
language eng
recordid cdi_ieee_primary_9786749
source IEEE Electronic Library (IEL)
subjects Algorithms
Apexes
Cyclic connectivity status (CCS)
cyclic status sequence (CSS)
Electronic commerce
Fault tolerant systems
Finite element analysis
Flow stability
fuzzy graph
Fuzzy sets
Graph theory
Graphical representations
Graphs
Human factors
human trafficking
Internet
Network theory (graphs)
Parameters
Stability analysis
title Cyclic Connectivity Status of Fuzzy Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclic%20Connectivity%20Status%20of%20Fuzzy%20Graphs&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Binu,%20M&rft.date=2022-12-01&rft.volume=30&rft.issue=12&rft.spage=5526&rft.epage=5533&rft.pages=5526-5533&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2022.3179778&rft_dat=%3Cproquest_RIE%3E2742703983%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742703983&rft_id=info:pmid/&rft_ieee_id=9786749&rfr_iscdi=true