Thinking Inside Uncertainty: Interest Moment Perception for Diverse Temporal Grounding
Given a language query, temporal grounding task is to localize temporal boundaries of the described event in an untrimmed video. There is a long-standing challenge that multiple moments may be associated with one same video-query pair, termed label uncertainty. However, existing methods struggle to...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2022-10, Vol.32 (10), p.7190-7203 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7203 |
---|---|
container_issue | 10 |
container_start_page | 7190 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 32 |
creator | Zhou, Hao Zhang, Chongyang Luo, Yan Hu, Chuanping Zhang, Wenjun |
description | Given a language query, temporal grounding task is to localize temporal boundaries of the described event in an untrimmed video. There is a long-standing challenge that multiple moments may be associated with one same video-query pair, termed label uncertainty. However, existing methods struggle to localize diverse moments due to the lack of multi-label annotations. In this paper, we propose a novel Diverse Temporal Grounding framework (DTG) to achieve diverse moment localization with only single-label annotations. By delving into the label uncertainty, we find the diverse moments retrieved tend to involve similar actions/objects, driving us to perceive these interest moments. Specifically, we construct soft multi-label through semantic similarity of multiple video-query pairs. These soft labels reveal whether multiple moments in the intra-videos contain similar verbs/nouns, thereby guiding interest moment generation. Meanwhile, we put forward a diverse moment regression network (DMRNet) to achieve multiple predictions in a single pass, where plausible moments are dynamically picked out from the interest moments for joint optimization. Moreover, we introduce new metrics that better reveal multi-output performance. Extensive experiments conducted on Charades-STA and ActivityNet Captions show that our method achieves state-of-the-art performance in terms of both standard and new metrics. |
doi_str_mv | 10.1109/TCSVT.2022.3179314 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9785774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9785774</ieee_id><sourcerecordid>2721428279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d10abad756b4d37ddcf69393cd3171aea266d29403eb201b42a37b43c41c570b3</originalsourceid><addsrcrecordid>eNo9kEFPwzAMhSMEEmPwB-ASiXNH4iRNyw0NGJOGQKLbtUobFzJYOpIOaf-ejk2cbFl-z88fIZecjThn-U0xflsUI2AAI8F1Lrg8IgOuVJYAMHXc90zxJAOuTslZjEvGuMykHpBF8eH8p_PvdOqjs0jnvsbQGee77W0_6zBg7Ohzu0Lf0VcMNa4713ratIHeux8MEWmBq3UbzBedhHbjbe92Tk4a8xXx4lCHZP74UIyfktnLZDq-myU15KpLLGemMlartJJWaGvrJs1FLmrbf8ENGkhTC7lkAitgvJJghK6kqCWvlWaVGJLrve86tN-bPmm5bDfB9ydL0MAlZNDTGBLYb9WhjTFgU66DW5mwLTkrd_zKP37ljl954NeLrvYih4j_glxnSmspfgGAAGzV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721428279</pqid></control><display><type>article</type><title>Thinking Inside Uncertainty: Interest Moment Perception for Diverse Temporal Grounding</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Hao ; Zhang, Chongyang ; Luo, Yan ; Hu, Chuanping ; Zhang, Wenjun</creator><creatorcontrib>Zhou, Hao ; Zhang, Chongyang ; Luo, Yan ; Hu, Chuanping ; Zhang, Wenjun</creatorcontrib><description>Given a language query, temporal grounding task is to localize temporal boundaries of the described event in an untrimmed video. There is a long-standing challenge that multiple moments may be associated with one same video-query pair, termed label uncertainty. However, existing methods struggle to localize diverse moments due to the lack of multi-label annotations. In this paper, we propose a novel Diverse Temporal Grounding framework (DTG) to achieve diverse moment localization with only single-label annotations. By delving into the label uncertainty, we find the diverse moments retrieved tend to involve similar actions/objects, driving us to perceive these interest moments. Specifically, we construct soft multi-label through semantic similarity of multiple video-query pairs. These soft labels reveal whether multiple moments in the intra-videos contain similar verbs/nouns, thereby guiding interest moment generation. Meanwhile, we put forward a diverse moment regression network (DMRNet) to achieve multiple predictions in a single pass, where plausible moments are dynamically picked out from the interest moments for joint optimization. Moreover, we introduce new metrics that better reveal multi-output performance. Extensive experiments conducted on Charades-STA and ActivityNet Captions show that our method achieves state-of-the-art performance in terms of both standard and new metrics.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2022.3179314</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Annotations ; Grounding ; label uncertainty ; Measurement ; moment localization ; Object recognition ; Optimization ; Predictive models ; Queries ; Query languages ; Task analysis ; Temporal grounding ; Uncertainty</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2022-10, Vol.32 (10), p.7190-7203</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d10abad756b4d37ddcf69393cd3171aea266d29403eb201b42a37b43c41c570b3</citedby><cites>FETCH-LOGICAL-c295t-d10abad756b4d37ddcf69393cd3171aea266d29403eb201b42a37b43c41c570b3</cites><orcidid>0000-0001-8799-1182 ; 0000-0002-0173-0393 ; 0000-0001-7292-0445 ; 0000-0002-1394-4452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9785774$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9785774$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Zhang, Chongyang</creatorcontrib><creatorcontrib>Luo, Yan</creatorcontrib><creatorcontrib>Hu, Chuanping</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><title>Thinking Inside Uncertainty: Interest Moment Perception for Diverse Temporal Grounding</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Given a language query, temporal grounding task is to localize temporal boundaries of the described event in an untrimmed video. There is a long-standing challenge that multiple moments may be associated with one same video-query pair, termed label uncertainty. However, existing methods struggle to localize diverse moments due to the lack of multi-label annotations. In this paper, we propose a novel Diverse Temporal Grounding framework (DTG) to achieve diverse moment localization with only single-label annotations. By delving into the label uncertainty, we find the diverse moments retrieved tend to involve similar actions/objects, driving us to perceive these interest moments. Specifically, we construct soft multi-label through semantic similarity of multiple video-query pairs. These soft labels reveal whether multiple moments in the intra-videos contain similar verbs/nouns, thereby guiding interest moment generation. Meanwhile, we put forward a diverse moment regression network (DMRNet) to achieve multiple predictions in a single pass, where plausible moments are dynamically picked out from the interest moments for joint optimization. Moreover, we introduce new metrics that better reveal multi-output performance. Extensive experiments conducted on Charades-STA and ActivityNet Captions show that our method achieves state-of-the-art performance in terms of both standard and new metrics.</description><subject>Annotations</subject><subject>Grounding</subject><subject>label uncertainty</subject><subject>Measurement</subject><subject>moment localization</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>Predictive models</subject><subject>Queries</subject><subject>Query languages</subject><subject>Task analysis</subject><subject>Temporal grounding</subject><subject>Uncertainty</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwzAMhSMEEmPwB-ASiXNH4iRNyw0NGJOGQKLbtUobFzJYOpIOaf-ejk2cbFl-z88fIZecjThn-U0xflsUI2AAI8F1Lrg8IgOuVJYAMHXc90zxJAOuTslZjEvGuMykHpBF8eH8p_PvdOqjs0jnvsbQGee77W0_6zBg7Ohzu0Lf0VcMNa4713ratIHeux8MEWmBq3UbzBedhHbjbe92Tk4a8xXx4lCHZP74UIyfktnLZDq-myU15KpLLGemMlartJJWaGvrJs1FLmrbf8ENGkhTC7lkAitgvJJghK6kqCWvlWaVGJLrve86tN-bPmm5bDfB9ydL0MAlZNDTGBLYb9WhjTFgU66DW5mwLTkrd_zKP37ljl954NeLrvYih4j_glxnSmspfgGAAGzV</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhou, Hao</creator><creator>Zhang, Chongyang</creator><creator>Luo, Yan</creator><creator>Hu, Chuanping</creator><creator>Zhang, Wenjun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8799-1182</orcidid><orcidid>https://orcid.org/0000-0002-0173-0393</orcidid><orcidid>https://orcid.org/0000-0001-7292-0445</orcidid><orcidid>https://orcid.org/0000-0002-1394-4452</orcidid></search><sort><creationdate>20221001</creationdate><title>Thinking Inside Uncertainty: Interest Moment Perception for Diverse Temporal Grounding</title><author>Zhou, Hao ; Zhang, Chongyang ; Luo, Yan ; Hu, Chuanping ; Zhang, Wenjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d10abad756b4d37ddcf69393cd3171aea266d29403eb201b42a37b43c41c570b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annotations</topic><topic>Grounding</topic><topic>label uncertainty</topic><topic>Measurement</topic><topic>moment localization</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>Predictive models</topic><topic>Queries</topic><topic>Query languages</topic><topic>Task analysis</topic><topic>Temporal grounding</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Zhang, Chongyang</creatorcontrib><creatorcontrib>Luo, Yan</creatorcontrib><creatorcontrib>Hu, Chuanping</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Hao</au><au>Zhang, Chongyang</au><au>Luo, Yan</au><au>Hu, Chuanping</au><au>Zhang, Wenjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thinking Inside Uncertainty: Interest Moment Perception for Diverse Temporal Grounding</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>32</volume><issue>10</issue><spage>7190</spage><epage>7203</epage><pages>7190-7203</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Given a language query, temporal grounding task is to localize temporal boundaries of the described event in an untrimmed video. There is a long-standing challenge that multiple moments may be associated with one same video-query pair, termed label uncertainty. However, existing methods struggle to localize diverse moments due to the lack of multi-label annotations. In this paper, we propose a novel Diverse Temporal Grounding framework (DTG) to achieve diverse moment localization with only single-label annotations. By delving into the label uncertainty, we find the diverse moments retrieved tend to involve similar actions/objects, driving us to perceive these interest moments. Specifically, we construct soft multi-label through semantic similarity of multiple video-query pairs. These soft labels reveal whether multiple moments in the intra-videos contain similar verbs/nouns, thereby guiding interest moment generation. Meanwhile, we put forward a diverse moment regression network (DMRNet) to achieve multiple predictions in a single pass, where plausible moments are dynamically picked out from the interest moments for joint optimization. Moreover, we introduce new metrics that better reveal multi-output performance. Extensive experiments conducted on Charades-STA and ActivityNet Captions show that our method achieves state-of-the-art performance in terms of both standard and new metrics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2022.3179314</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8799-1182</orcidid><orcidid>https://orcid.org/0000-0002-0173-0393</orcidid><orcidid>https://orcid.org/0000-0001-7292-0445</orcidid><orcidid>https://orcid.org/0000-0002-1394-4452</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2022-10, Vol.32 (10), p.7190-7203 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_ieee_primary_9785774 |
source | IEEE Electronic Library (IEL) |
subjects | Annotations Grounding label uncertainty Measurement moment localization Object recognition Optimization Predictive models Queries Query languages Task analysis Temporal grounding Uncertainty |
title | Thinking Inside Uncertainty: Interest Moment Perception for Diverse Temporal Grounding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A30%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thinking%20Inside%20Uncertainty:%20Interest%20Moment%20Perception%20for%20Diverse%20Temporal%20Grounding&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Zhou,%20Hao&rft.date=2022-10-01&rft.volume=32&rft.issue=10&rft.spage=7190&rft.epage=7203&rft.pages=7190-7203&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2022.3179314&rft_dat=%3Cproquest_RIE%3E2721428279%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721428279&rft_id=info:pmid/&rft_ieee_id=9785774&rfr_iscdi=true |