Thinking Inside Uncertainty: Interest Moment Perception for Diverse Temporal Grounding

Given a language query, temporal grounding task is to localize temporal boundaries of the described event in an untrimmed video. There is a long-standing challenge that multiple moments may be associated with one same video-query pair, termed label uncertainty. However, existing methods struggle to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2022-10, Vol.32 (10), p.7190-7203
Hauptverfasser: Zhou, Hao, Zhang, Chongyang, Luo, Yan, Hu, Chuanping, Zhang, Wenjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7203
container_issue 10
container_start_page 7190
container_title IEEE transactions on circuits and systems for video technology
container_volume 32
creator Zhou, Hao
Zhang, Chongyang
Luo, Yan
Hu, Chuanping
Zhang, Wenjun
description Given a language query, temporal grounding task is to localize temporal boundaries of the described event in an untrimmed video. There is a long-standing challenge that multiple moments may be associated with one same video-query pair, termed label uncertainty. However, existing methods struggle to localize diverse moments due to the lack of multi-label annotations. In this paper, we propose a novel Diverse Temporal Grounding framework (DTG) to achieve diverse moment localization with only single-label annotations. By delving into the label uncertainty, we find the diverse moments retrieved tend to involve similar actions/objects, driving us to perceive these interest moments. Specifically, we construct soft multi-label through semantic similarity of multiple video-query pairs. These soft labels reveal whether multiple moments in the intra-videos contain similar verbs/nouns, thereby guiding interest moment generation. Meanwhile, we put forward a diverse moment regression network (DMRNet) to achieve multiple predictions in a single pass, where plausible moments are dynamically picked out from the interest moments for joint optimization. Moreover, we introduce new metrics that better reveal multi-output performance. Extensive experiments conducted on Charades-STA and ActivityNet Captions show that our method achieves state-of-the-art performance in terms of both standard and new metrics.
doi_str_mv 10.1109/TCSVT.2022.3179314
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9785774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9785774</ieee_id><sourcerecordid>2721428279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d10abad756b4d37ddcf69393cd3171aea266d29403eb201b42a37b43c41c570b3</originalsourceid><addsrcrecordid>eNo9kEFPwzAMhSMEEmPwB-ASiXNH4iRNyw0NGJOGQKLbtUobFzJYOpIOaf-ejk2cbFl-z88fIZecjThn-U0xflsUI2AAI8F1Lrg8IgOuVJYAMHXc90zxJAOuTslZjEvGuMykHpBF8eH8p_PvdOqjs0jnvsbQGee77W0_6zBg7Ohzu0Lf0VcMNa4713ratIHeux8MEWmBq3UbzBedhHbjbe92Tk4a8xXx4lCHZP74UIyfktnLZDq-myU15KpLLGemMlartJJWaGvrJs1FLmrbf8ENGkhTC7lkAitgvJJghK6kqCWvlWaVGJLrve86tN-bPmm5bDfB9ydL0MAlZNDTGBLYb9WhjTFgU66DW5mwLTkrd_zKP37ljl954NeLrvYih4j_glxnSmspfgGAAGzV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721428279</pqid></control><display><type>article</type><title>Thinking Inside Uncertainty: Interest Moment Perception for Diverse Temporal Grounding</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Hao ; Zhang, Chongyang ; Luo, Yan ; Hu, Chuanping ; Zhang, Wenjun</creator><creatorcontrib>Zhou, Hao ; Zhang, Chongyang ; Luo, Yan ; Hu, Chuanping ; Zhang, Wenjun</creatorcontrib><description>Given a language query, temporal grounding task is to localize temporal boundaries of the described event in an untrimmed video. There is a long-standing challenge that multiple moments may be associated with one same video-query pair, termed label uncertainty. However, existing methods struggle to localize diverse moments due to the lack of multi-label annotations. In this paper, we propose a novel Diverse Temporal Grounding framework (DTG) to achieve diverse moment localization with only single-label annotations. By delving into the label uncertainty, we find the diverse moments retrieved tend to involve similar actions/objects, driving us to perceive these interest moments. Specifically, we construct soft multi-label through semantic similarity of multiple video-query pairs. These soft labels reveal whether multiple moments in the intra-videos contain similar verbs/nouns, thereby guiding interest moment generation. Meanwhile, we put forward a diverse moment regression network (DMRNet) to achieve multiple predictions in a single pass, where plausible moments are dynamically picked out from the interest moments for joint optimization. Moreover, we introduce new metrics that better reveal multi-output performance. Extensive experiments conducted on Charades-STA and ActivityNet Captions show that our method achieves state-of-the-art performance in terms of both standard and new metrics.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2022.3179314</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Annotations ; Grounding ; label uncertainty ; Measurement ; moment localization ; Object recognition ; Optimization ; Predictive models ; Queries ; Query languages ; Task analysis ; Temporal grounding ; Uncertainty</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2022-10, Vol.32 (10), p.7190-7203</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d10abad756b4d37ddcf69393cd3171aea266d29403eb201b42a37b43c41c570b3</citedby><cites>FETCH-LOGICAL-c295t-d10abad756b4d37ddcf69393cd3171aea266d29403eb201b42a37b43c41c570b3</cites><orcidid>0000-0001-8799-1182 ; 0000-0002-0173-0393 ; 0000-0001-7292-0445 ; 0000-0002-1394-4452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9785774$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9785774$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Zhang, Chongyang</creatorcontrib><creatorcontrib>Luo, Yan</creatorcontrib><creatorcontrib>Hu, Chuanping</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><title>Thinking Inside Uncertainty: Interest Moment Perception for Diverse Temporal Grounding</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Given a language query, temporal grounding task is to localize temporal boundaries of the described event in an untrimmed video. There is a long-standing challenge that multiple moments may be associated with one same video-query pair, termed label uncertainty. However, existing methods struggle to localize diverse moments due to the lack of multi-label annotations. In this paper, we propose a novel Diverse Temporal Grounding framework (DTG) to achieve diverse moment localization with only single-label annotations. By delving into the label uncertainty, we find the diverse moments retrieved tend to involve similar actions/objects, driving us to perceive these interest moments. Specifically, we construct soft multi-label through semantic similarity of multiple video-query pairs. These soft labels reveal whether multiple moments in the intra-videos contain similar verbs/nouns, thereby guiding interest moment generation. Meanwhile, we put forward a diverse moment regression network (DMRNet) to achieve multiple predictions in a single pass, where plausible moments are dynamically picked out from the interest moments for joint optimization. Moreover, we introduce new metrics that better reveal multi-output performance. Extensive experiments conducted on Charades-STA and ActivityNet Captions show that our method achieves state-of-the-art performance in terms of both standard and new metrics.</description><subject>Annotations</subject><subject>Grounding</subject><subject>label uncertainty</subject><subject>Measurement</subject><subject>moment localization</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>Predictive models</subject><subject>Queries</subject><subject>Query languages</subject><subject>Task analysis</subject><subject>Temporal grounding</subject><subject>Uncertainty</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwzAMhSMEEmPwB-ASiXNH4iRNyw0NGJOGQKLbtUobFzJYOpIOaf-ejk2cbFl-z88fIZecjThn-U0xflsUI2AAI8F1Lrg8IgOuVJYAMHXc90zxJAOuTslZjEvGuMykHpBF8eH8p_PvdOqjs0jnvsbQGee77W0_6zBg7Ohzu0Lf0VcMNa4713ratIHeux8MEWmBq3UbzBedhHbjbe92Tk4a8xXx4lCHZP74UIyfktnLZDq-myU15KpLLGemMlartJJWaGvrJs1FLmrbf8ENGkhTC7lkAitgvJJghK6kqCWvlWaVGJLrve86tN-bPmm5bDfB9ydL0MAlZNDTGBLYb9WhjTFgU66DW5mwLTkrd_zKP37ljl954NeLrvYih4j_glxnSmspfgGAAGzV</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhou, Hao</creator><creator>Zhang, Chongyang</creator><creator>Luo, Yan</creator><creator>Hu, Chuanping</creator><creator>Zhang, Wenjun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8799-1182</orcidid><orcidid>https://orcid.org/0000-0002-0173-0393</orcidid><orcidid>https://orcid.org/0000-0001-7292-0445</orcidid><orcidid>https://orcid.org/0000-0002-1394-4452</orcidid></search><sort><creationdate>20221001</creationdate><title>Thinking Inside Uncertainty: Interest Moment Perception for Diverse Temporal Grounding</title><author>Zhou, Hao ; Zhang, Chongyang ; Luo, Yan ; Hu, Chuanping ; Zhang, Wenjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d10abad756b4d37ddcf69393cd3171aea266d29403eb201b42a37b43c41c570b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annotations</topic><topic>Grounding</topic><topic>label uncertainty</topic><topic>Measurement</topic><topic>moment localization</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>Predictive models</topic><topic>Queries</topic><topic>Query languages</topic><topic>Task analysis</topic><topic>Temporal grounding</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Zhang, Chongyang</creatorcontrib><creatorcontrib>Luo, Yan</creatorcontrib><creatorcontrib>Hu, Chuanping</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Hao</au><au>Zhang, Chongyang</au><au>Luo, Yan</au><au>Hu, Chuanping</au><au>Zhang, Wenjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thinking Inside Uncertainty: Interest Moment Perception for Diverse Temporal Grounding</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>32</volume><issue>10</issue><spage>7190</spage><epage>7203</epage><pages>7190-7203</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Given a language query, temporal grounding task is to localize temporal boundaries of the described event in an untrimmed video. There is a long-standing challenge that multiple moments may be associated with one same video-query pair, termed label uncertainty. However, existing methods struggle to localize diverse moments due to the lack of multi-label annotations. In this paper, we propose a novel Diverse Temporal Grounding framework (DTG) to achieve diverse moment localization with only single-label annotations. By delving into the label uncertainty, we find the diverse moments retrieved tend to involve similar actions/objects, driving us to perceive these interest moments. Specifically, we construct soft multi-label through semantic similarity of multiple video-query pairs. These soft labels reveal whether multiple moments in the intra-videos contain similar verbs/nouns, thereby guiding interest moment generation. Meanwhile, we put forward a diverse moment regression network (DMRNet) to achieve multiple predictions in a single pass, where plausible moments are dynamically picked out from the interest moments for joint optimization. Moreover, we introduce new metrics that better reveal multi-output performance. Extensive experiments conducted on Charades-STA and ActivityNet Captions show that our method achieves state-of-the-art performance in terms of both standard and new metrics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2022.3179314</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8799-1182</orcidid><orcidid>https://orcid.org/0000-0002-0173-0393</orcidid><orcidid>https://orcid.org/0000-0001-7292-0445</orcidid><orcidid>https://orcid.org/0000-0002-1394-4452</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2022-10, Vol.32 (10), p.7190-7203
issn 1051-8215
1558-2205
language eng
recordid cdi_ieee_primary_9785774
source IEEE Electronic Library (IEL)
subjects Annotations
Grounding
label uncertainty
Measurement
moment localization
Object recognition
Optimization
Predictive models
Queries
Query languages
Task analysis
Temporal grounding
Uncertainty
title Thinking Inside Uncertainty: Interest Moment Perception for Diverse Temporal Grounding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A30%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thinking%20Inside%20Uncertainty:%20Interest%20Moment%20Perception%20for%20Diverse%20Temporal%20Grounding&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Zhou,%20Hao&rft.date=2022-10-01&rft.volume=32&rft.issue=10&rft.spage=7190&rft.epage=7203&rft.pages=7190-7203&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2022.3179314&rft_dat=%3Cproquest_RIE%3E2721428279%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721428279&rft_id=info:pmid/&rft_ieee_id=9785774&rfr_iscdi=true