Electromagnetic Characterization of Thin Films by Using Non-Contacting Waveguides

Surface impedance represents a crucial parameter for the characterization of thin films. Indeed, materials with a sheet impedance varying as a function of their elongation could be used in radio frequency piezoresistive sensors. To estimate this quantity while having the possibility of stretching th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2022-09, Vol.70 (9), p.8452-8460
Hauptverfasser: Rodini, Sandra, Genovesi, Simone, Manara, Giuliano, Costa, Filippo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8460
container_issue 9
container_start_page 8452
container_title IEEE transactions on antennas and propagation
container_volume 70
creator Rodini, Sandra
Genovesi, Simone
Manara, Giuliano
Costa, Filippo
description Surface impedance represents a crucial parameter for the characterization of thin films. Indeed, materials with a sheet impedance varying as a function of their elongation could be used in radio frequency piezoresistive sensors. To estimate this quantity while having the possibility of stretching the sample under test, a waveguide-based non-contact approach is proposed. The absence of contact between the sample under test and the waveguides determines an electromagnetic field leakage, which is prevented by adopting an electromagnetic band gap (EBG) structure. The surface impedance of the sample is retrieved through an inversion procedure exploiting the scattering parameters measured using the proposed setup. The inversion procedure is based on a circuit representation of the waveguide-air-waveguide Section as a \pi -junction. The reliability of the proposed measurement method has been experimentally assessed using a WR137 waveguide. The proposed method allows to accurately determine the real part of surface impedance (the sheet resistance), while higher uncertainty is achieved in the estimation of the imaginary part.
doi_str_mv 10.1109/TAP.2022.3177521
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9785487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9785487</ieee_id><sourcerecordid>2723900706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-6eb8ab8a16f999277ee8aa450008bc50ca62aa435ed08c3bbd29aab3a6fb079b3</originalsourceid><addsrcrecordid>eNo9kMtLAzEQh4MoWKt3wcuC562T7CPJsZRWheIDWvQWknS2TWk3NdkK9a83pSIMDD_45sFHyC2FAaUgH2bDtwEDxgYF5bxi9Iz0aFWJnDFGz0kPgIpcsvrzklzFuE6xFGXZI-_jDdou-K1ettg5m41WOmjbYXA_unO-zXyTzVauzSZus42ZOWTz6Npl9uLbfOTbLrHH-KG_cbl3C4zX5KLRm4g3f71P5pPxbPSUT18fn0fDaW7TR11eoxE6Fa0bKSXjHFFoXVYAIIytwOqapVxUuABhC2MWTGptCl03Brg0RZ_cn_bugv_aY-zU2u9Dm04qxlkhATjUiYITZYOPMWCjdsFtdTgoCuooTiVx6ihO_YlLI3enEYeI_7jkoioFL34Bg5RqRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723900706</pqid></control><display><type>article</type><title>Electromagnetic Characterization of Thin Films by Using Non-Contacting Waveguides</title><source>IEEE Electronic Library (IEL)</source><creator>Rodini, Sandra ; Genovesi, Simone ; Manara, Giuliano ; Costa, Filippo</creator><creatorcontrib>Rodini, Sandra ; Genovesi, Simone ; Manara, Giuliano ; Costa, Filippo</creatorcontrib><description>Surface impedance represents a crucial parameter for the characterization of thin films. Indeed, materials with a sheet impedance varying as a function of their elongation could be used in radio frequency piezoresistive sensors. To estimate this quantity while having the possibility of stretching the sample under test, a waveguide-based non-contact approach is proposed. The absence of contact between the sample under test and the waveguides determines an electromagnetic field leakage, which is prevented by adopting an electromagnetic band gap (EBG) structure. The surface impedance of the sample is retrieved through an inversion procedure exploiting the scattering parameters measured using the proposed setup. The inversion procedure is based on a circuit representation of the waveguide-air-waveguide Section as a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\pi &lt;/tex-math&gt;&lt;/inline-formula&gt;-junction. The reliability of the proposed measurement method has been experimentally assessed using a WR137 waveguide. The proposed method allows to accurately determine the real part of surface impedance (the sheet resistance), while higher uncertainty is achieved in the estimation of the imaginary part.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2022.3177521</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuits ; Contact ; Electromagnetic band gap (EBG) ; Electromagnetic fields ; Electromagnetic properties ; Electromagnetic waveguides ; Elongation ; Flanges ; Impedance ; Measurement methods ; piezoresistive sensors ; Reliability analysis ; S parameters ; Sensors ; sheet resistance ; stretchable materials ; Surface impedance ; surface impedance measurement ; Surface resistance ; Surface waves ; Thin films ; thin sheets ; Waveguides ; wireless sensors</subject><ispartof>IEEE transactions on antennas and propagation, 2022-09, Vol.70 (9), p.8452-8460</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-6eb8ab8a16f999277ee8aa450008bc50ca62aa435ed08c3bbd29aab3a6fb079b3</citedby><cites>FETCH-LOGICAL-c221t-6eb8ab8a16f999277ee8aa450008bc50ca62aa435ed08c3bbd29aab3a6fb079b3</cites><orcidid>0000-0001-7572-2014 ; 0000-0002-5323-1780 ; 0000-0002-1242-1908 ; 0000-0002-2107-2826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9785487$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9785487$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rodini, Sandra</creatorcontrib><creatorcontrib>Genovesi, Simone</creatorcontrib><creatorcontrib>Manara, Giuliano</creatorcontrib><creatorcontrib>Costa, Filippo</creatorcontrib><title>Electromagnetic Characterization of Thin Films by Using Non-Contacting Waveguides</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Surface impedance represents a crucial parameter for the characterization of thin films. Indeed, materials with a sheet impedance varying as a function of their elongation could be used in radio frequency piezoresistive sensors. To estimate this quantity while having the possibility of stretching the sample under test, a waveguide-based non-contact approach is proposed. The absence of contact between the sample under test and the waveguides determines an electromagnetic field leakage, which is prevented by adopting an electromagnetic band gap (EBG) structure. The surface impedance of the sample is retrieved through an inversion procedure exploiting the scattering parameters measured using the proposed setup. The inversion procedure is based on a circuit representation of the waveguide-air-waveguide Section as a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\pi &lt;/tex-math&gt;&lt;/inline-formula&gt;-junction. The reliability of the proposed measurement method has been experimentally assessed using a WR137 waveguide. The proposed method allows to accurately determine the real part of surface impedance (the sheet resistance), while higher uncertainty is achieved in the estimation of the imaginary part.</description><subject>Circuits</subject><subject>Contact</subject><subject>Electromagnetic band gap (EBG)</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic properties</subject><subject>Electromagnetic waveguides</subject><subject>Elongation</subject><subject>Flanges</subject><subject>Impedance</subject><subject>Measurement methods</subject><subject>piezoresistive sensors</subject><subject>Reliability analysis</subject><subject>S parameters</subject><subject>Sensors</subject><subject>sheet resistance</subject><subject>stretchable materials</subject><subject>Surface impedance</subject><subject>surface impedance measurement</subject><subject>Surface resistance</subject><subject>Surface waves</subject><subject>Thin films</subject><subject>thin sheets</subject><subject>Waveguides</subject><subject>wireless sensors</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtLAzEQh4MoWKt3wcuC562T7CPJsZRWheIDWvQWknS2TWk3NdkK9a83pSIMDD_45sFHyC2FAaUgH2bDtwEDxgYF5bxi9Iz0aFWJnDFGz0kPgIpcsvrzklzFuE6xFGXZI-_jDdou-K1ettg5m41WOmjbYXA_unO-zXyTzVauzSZus42ZOWTz6Npl9uLbfOTbLrHH-KG_cbl3C4zX5KLRm4g3f71P5pPxbPSUT18fn0fDaW7TR11eoxE6Fa0bKSXjHFFoXVYAIIytwOqapVxUuABhC2MWTGptCl03Brg0RZ_cn_bugv_aY-zU2u9Dm04qxlkhATjUiYITZYOPMWCjdsFtdTgoCuooTiVx6ihO_YlLI3enEYeI_7jkoioFL34Bg5RqRQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Rodini, Sandra</creator><creator>Genovesi, Simone</creator><creator>Manara, Giuliano</creator><creator>Costa, Filippo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7572-2014</orcidid><orcidid>https://orcid.org/0000-0002-5323-1780</orcidid><orcidid>https://orcid.org/0000-0002-1242-1908</orcidid><orcidid>https://orcid.org/0000-0002-2107-2826</orcidid></search><sort><creationdate>20220901</creationdate><title>Electromagnetic Characterization of Thin Films by Using Non-Contacting Waveguides</title><author>Rodini, Sandra ; Genovesi, Simone ; Manara, Giuliano ; Costa, Filippo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-6eb8ab8a16f999277ee8aa450008bc50ca62aa435ed08c3bbd29aab3a6fb079b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuits</topic><topic>Contact</topic><topic>Electromagnetic band gap (EBG)</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic properties</topic><topic>Electromagnetic waveguides</topic><topic>Elongation</topic><topic>Flanges</topic><topic>Impedance</topic><topic>Measurement methods</topic><topic>piezoresistive sensors</topic><topic>Reliability analysis</topic><topic>S parameters</topic><topic>Sensors</topic><topic>sheet resistance</topic><topic>stretchable materials</topic><topic>Surface impedance</topic><topic>surface impedance measurement</topic><topic>Surface resistance</topic><topic>Surface waves</topic><topic>Thin films</topic><topic>thin sheets</topic><topic>Waveguides</topic><topic>wireless sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodini, Sandra</creatorcontrib><creatorcontrib>Genovesi, Simone</creatorcontrib><creatorcontrib>Manara, Giuliano</creatorcontrib><creatorcontrib>Costa, Filippo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rodini, Sandra</au><au>Genovesi, Simone</au><au>Manara, Giuliano</au><au>Costa, Filippo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic Characterization of Thin Films by Using Non-Contacting Waveguides</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>70</volume><issue>9</issue><spage>8452</spage><epage>8460</epage><pages>8452-8460</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Surface impedance represents a crucial parameter for the characterization of thin films. Indeed, materials with a sheet impedance varying as a function of their elongation could be used in radio frequency piezoresistive sensors. To estimate this quantity while having the possibility of stretching the sample under test, a waveguide-based non-contact approach is proposed. The absence of contact between the sample under test and the waveguides determines an electromagnetic field leakage, which is prevented by adopting an electromagnetic band gap (EBG) structure. The surface impedance of the sample is retrieved through an inversion procedure exploiting the scattering parameters measured using the proposed setup. The inversion procedure is based on a circuit representation of the waveguide-air-waveguide Section as a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\pi &lt;/tex-math&gt;&lt;/inline-formula&gt;-junction. The reliability of the proposed measurement method has been experimentally assessed using a WR137 waveguide. The proposed method allows to accurately determine the real part of surface impedance (the sheet resistance), while higher uncertainty is achieved in the estimation of the imaginary part.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2022.3177521</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7572-2014</orcidid><orcidid>https://orcid.org/0000-0002-5323-1780</orcidid><orcidid>https://orcid.org/0000-0002-1242-1908</orcidid><orcidid>https://orcid.org/0000-0002-2107-2826</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2022-09, Vol.70 (9), p.8452-8460
issn 0018-926X
1558-2221
language eng
recordid cdi_ieee_primary_9785487
source IEEE Electronic Library (IEL)
subjects Circuits
Contact
Electromagnetic band gap (EBG)
Electromagnetic fields
Electromagnetic properties
Electromagnetic waveguides
Elongation
Flanges
Impedance
Measurement methods
piezoresistive sensors
Reliability analysis
S parameters
Sensors
sheet resistance
stretchable materials
Surface impedance
surface impedance measurement
Surface resistance
Surface waves
Thin films
thin sheets
Waveguides
wireless sensors
title Electromagnetic Characterization of Thin Films by Using Non-Contacting Waveguides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20Characterization%20of%20Thin%20Films%20by%20Using%20Non-Contacting%20Waveguides&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Rodini,%20Sandra&rft.date=2022-09-01&rft.volume=70&rft.issue=9&rft.spage=8452&rft.epage=8460&rft.pages=8452-8460&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2022.3177521&rft_dat=%3Cproquest_RIE%3E2723900706%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723900706&rft_id=info:pmid/&rft_ieee_id=9785487&rfr_iscdi=true