Electromagnetic Characterization of Thin Films by Using Non-Contacting Waveguides
Surface impedance represents a crucial parameter for the characterization of thin films. Indeed, materials with a sheet impedance varying as a function of their elongation could be used in radio frequency piezoresistive sensors. To estimate this quantity while having the possibility of stretching th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2022-09, Vol.70 (9), p.8452-8460 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8460 |
---|---|
container_issue | 9 |
container_start_page | 8452 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 70 |
creator | Rodini, Sandra Genovesi, Simone Manara, Giuliano Costa, Filippo |
description | Surface impedance represents a crucial parameter for the characterization of thin films. Indeed, materials with a sheet impedance varying as a function of their elongation could be used in radio frequency piezoresistive sensors. To estimate this quantity while having the possibility of stretching the sample under test, a waveguide-based non-contact approach is proposed. The absence of contact between the sample under test and the waveguides determines an electromagnetic field leakage, which is prevented by adopting an electromagnetic band gap (EBG) structure. The surface impedance of the sample is retrieved through an inversion procedure exploiting the scattering parameters measured using the proposed setup. The inversion procedure is based on a circuit representation of the waveguide-air-waveguide Section as a \pi -junction. The reliability of the proposed measurement method has been experimentally assessed using a WR137 waveguide. The proposed method allows to accurately determine the real part of surface impedance (the sheet resistance), while higher uncertainty is achieved in the estimation of the imaginary part. |
doi_str_mv | 10.1109/TAP.2022.3177521 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9785487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9785487</ieee_id><sourcerecordid>2723900706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-6eb8ab8a16f999277ee8aa450008bc50ca62aa435ed08c3bbd29aab3a6fb079b3</originalsourceid><addsrcrecordid>eNo9kMtLAzEQh4MoWKt3wcuC562T7CPJsZRWheIDWvQWknS2TWk3NdkK9a83pSIMDD_45sFHyC2FAaUgH2bDtwEDxgYF5bxi9Iz0aFWJnDFGz0kPgIpcsvrzklzFuE6xFGXZI-_jDdou-K1ettg5m41WOmjbYXA_unO-zXyTzVauzSZus42ZOWTz6Npl9uLbfOTbLrHH-KG_cbl3C4zX5KLRm4g3f71P5pPxbPSUT18fn0fDaW7TR11eoxE6Fa0bKSXjHFFoXVYAIIytwOqapVxUuABhC2MWTGptCl03Brg0RZ_cn_bugv_aY-zU2u9Dm04qxlkhATjUiYITZYOPMWCjdsFtdTgoCuooTiVx6ihO_YlLI3enEYeI_7jkoioFL34Bg5RqRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723900706</pqid></control><display><type>article</type><title>Electromagnetic Characterization of Thin Films by Using Non-Contacting Waveguides</title><source>IEEE Electronic Library (IEL)</source><creator>Rodini, Sandra ; Genovesi, Simone ; Manara, Giuliano ; Costa, Filippo</creator><creatorcontrib>Rodini, Sandra ; Genovesi, Simone ; Manara, Giuliano ; Costa, Filippo</creatorcontrib><description>Surface impedance represents a crucial parameter for the characterization of thin films. Indeed, materials with a sheet impedance varying as a function of their elongation could be used in radio frequency piezoresistive sensors. To estimate this quantity while having the possibility of stretching the sample under test, a waveguide-based non-contact approach is proposed. The absence of contact between the sample under test and the waveguides determines an electromagnetic field leakage, which is prevented by adopting an electromagnetic band gap (EBG) structure. The surface impedance of the sample is retrieved through an inversion procedure exploiting the scattering parameters measured using the proposed setup. The inversion procedure is based on a circuit representation of the waveguide-air-waveguide Section as a <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>-junction. The reliability of the proposed measurement method has been experimentally assessed using a WR137 waveguide. The proposed method allows to accurately determine the real part of surface impedance (the sheet resistance), while higher uncertainty is achieved in the estimation of the imaginary part.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2022.3177521</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuits ; Contact ; Electromagnetic band gap (EBG) ; Electromagnetic fields ; Electromagnetic properties ; Electromagnetic waveguides ; Elongation ; Flanges ; Impedance ; Measurement methods ; piezoresistive sensors ; Reliability analysis ; S parameters ; Sensors ; sheet resistance ; stretchable materials ; Surface impedance ; surface impedance measurement ; Surface resistance ; Surface waves ; Thin films ; thin sheets ; Waveguides ; wireless sensors</subject><ispartof>IEEE transactions on antennas and propagation, 2022-09, Vol.70 (9), p.8452-8460</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-6eb8ab8a16f999277ee8aa450008bc50ca62aa435ed08c3bbd29aab3a6fb079b3</citedby><cites>FETCH-LOGICAL-c221t-6eb8ab8a16f999277ee8aa450008bc50ca62aa435ed08c3bbd29aab3a6fb079b3</cites><orcidid>0000-0001-7572-2014 ; 0000-0002-5323-1780 ; 0000-0002-1242-1908 ; 0000-0002-2107-2826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9785487$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9785487$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rodini, Sandra</creatorcontrib><creatorcontrib>Genovesi, Simone</creatorcontrib><creatorcontrib>Manara, Giuliano</creatorcontrib><creatorcontrib>Costa, Filippo</creatorcontrib><title>Electromagnetic Characterization of Thin Films by Using Non-Contacting Waveguides</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Surface impedance represents a crucial parameter for the characterization of thin films. Indeed, materials with a sheet impedance varying as a function of their elongation could be used in radio frequency piezoresistive sensors. To estimate this quantity while having the possibility of stretching the sample under test, a waveguide-based non-contact approach is proposed. The absence of contact between the sample under test and the waveguides determines an electromagnetic field leakage, which is prevented by adopting an electromagnetic band gap (EBG) structure. The surface impedance of the sample is retrieved through an inversion procedure exploiting the scattering parameters measured using the proposed setup. The inversion procedure is based on a circuit representation of the waveguide-air-waveguide Section as a <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>-junction. The reliability of the proposed measurement method has been experimentally assessed using a WR137 waveguide. The proposed method allows to accurately determine the real part of surface impedance (the sheet resistance), while higher uncertainty is achieved in the estimation of the imaginary part.</description><subject>Circuits</subject><subject>Contact</subject><subject>Electromagnetic band gap (EBG)</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic properties</subject><subject>Electromagnetic waveguides</subject><subject>Elongation</subject><subject>Flanges</subject><subject>Impedance</subject><subject>Measurement methods</subject><subject>piezoresistive sensors</subject><subject>Reliability analysis</subject><subject>S parameters</subject><subject>Sensors</subject><subject>sheet resistance</subject><subject>stretchable materials</subject><subject>Surface impedance</subject><subject>surface impedance measurement</subject><subject>Surface resistance</subject><subject>Surface waves</subject><subject>Thin films</subject><subject>thin sheets</subject><subject>Waveguides</subject><subject>wireless sensors</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtLAzEQh4MoWKt3wcuC562T7CPJsZRWheIDWvQWknS2TWk3NdkK9a83pSIMDD_45sFHyC2FAaUgH2bDtwEDxgYF5bxi9Iz0aFWJnDFGz0kPgIpcsvrzklzFuE6xFGXZI-_jDdou-K1ettg5m41WOmjbYXA_unO-zXyTzVauzSZus42ZOWTz6Npl9uLbfOTbLrHH-KG_cbl3C4zX5KLRm4g3f71P5pPxbPSUT18fn0fDaW7TR11eoxE6Fa0bKSXjHFFoXVYAIIytwOqapVxUuABhC2MWTGptCl03Brg0RZ_cn_bugv_aY-zU2u9Dm04qxlkhATjUiYITZYOPMWCjdsFtdTgoCuooTiVx6ihO_YlLI3enEYeI_7jkoioFL34Bg5RqRQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Rodini, Sandra</creator><creator>Genovesi, Simone</creator><creator>Manara, Giuliano</creator><creator>Costa, Filippo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7572-2014</orcidid><orcidid>https://orcid.org/0000-0002-5323-1780</orcidid><orcidid>https://orcid.org/0000-0002-1242-1908</orcidid><orcidid>https://orcid.org/0000-0002-2107-2826</orcidid></search><sort><creationdate>20220901</creationdate><title>Electromagnetic Characterization of Thin Films by Using Non-Contacting Waveguides</title><author>Rodini, Sandra ; Genovesi, Simone ; Manara, Giuliano ; Costa, Filippo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-6eb8ab8a16f999277ee8aa450008bc50ca62aa435ed08c3bbd29aab3a6fb079b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuits</topic><topic>Contact</topic><topic>Electromagnetic band gap (EBG)</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic properties</topic><topic>Electromagnetic waveguides</topic><topic>Elongation</topic><topic>Flanges</topic><topic>Impedance</topic><topic>Measurement methods</topic><topic>piezoresistive sensors</topic><topic>Reliability analysis</topic><topic>S parameters</topic><topic>Sensors</topic><topic>sheet resistance</topic><topic>stretchable materials</topic><topic>Surface impedance</topic><topic>surface impedance measurement</topic><topic>Surface resistance</topic><topic>Surface waves</topic><topic>Thin films</topic><topic>thin sheets</topic><topic>Waveguides</topic><topic>wireless sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodini, Sandra</creatorcontrib><creatorcontrib>Genovesi, Simone</creatorcontrib><creatorcontrib>Manara, Giuliano</creatorcontrib><creatorcontrib>Costa, Filippo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rodini, Sandra</au><au>Genovesi, Simone</au><au>Manara, Giuliano</au><au>Costa, Filippo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic Characterization of Thin Films by Using Non-Contacting Waveguides</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>70</volume><issue>9</issue><spage>8452</spage><epage>8460</epage><pages>8452-8460</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Surface impedance represents a crucial parameter for the characterization of thin films. Indeed, materials with a sheet impedance varying as a function of their elongation could be used in radio frequency piezoresistive sensors. To estimate this quantity while having the possibility of stretching the sample under test, a waveguide-based non-contact approach is proposed. The absence of contact between the sample under test and the waveguides determines an electromagnetic field leakage, which is prevented by adopting an electromagnetic band gap (EBG) structure. The surface impedance of the sample is retrieved through an inversion procedure exploiting the scattering parameters measured using the proposed setup. The inversion procedure is based on a circuit representation of the waveguide-air-waveguide Section as a <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>-junction. The reliability of the proposed measurement method has been experimentally assessed using a WR137 waveguide. The proposed method allows to accurately determine the real part of surface impedance (the sheet resistance), while higher uncertainty is achieved in the estimation of the imaginary part.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2022.3177521</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7572-2014</orcidid><orcidid>https://orcid.org/0000-0002-5323-1780</orcidid><orcidid>https://orcid.org/0000-0002-1242-1908</orcidid><orcidid>https://orcid.org/0000-0002-2107-2826</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2022-09, Vol.70 (9), p.8452-8460 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_ieee_primary_9785487 |
source | IEEE Electronic Library (IEL) |
subjects | Circuits Contact Electromagnetic band gap (EBG) Electromagnetic fields Electromagnetic properties Electromagnetic waveguides Elongation Flanges Impedance Measurement methods piezoresistive sensors Reliability analysis S parameters Sensors sheet resistance stretchable materials Surface impedance surface impedance measurement Surface resistance Surface waves Thin films thin sheets Waveguides wireless sensors |
title | Electromagnetic Characterization of Thin Films by Using Non-Contacting Waveguides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20Characterization%20of%20Thin%20Films%20by%20Using%20Non-Contacting%20Waveguides&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Rodini,%20Sandra&rft.date=2022-09-01&rft.volume=70&rft.issue=9&rft.spage=8452&rft.epage=8460&rft.pages=8452-8460&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2022.3177521&rft_dat=%3Cproquest_RIE%3E2723900706%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723900706&rft_id=info:pmid/&rft_ieee_id=9785487&rfr_iscdi=true |