Integration Design of Portable ECG Signal Acquisition With Deep-Learning Based Electrode Motion Artifact Removal on an Embedded System
For long-term electrocardiogram (ECG) signal monitoring, a portable and small size acquisition device with Bluetooth low energy (BLE) communication is designed and integrated with a Nvidia Jetson Xavier NX for realizing the electrode motion artifact removal technique. The digitalized ECG codes are c...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.57555-57564 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57564 |
---|---|
container_issue | |
container_start_page | 57555 |
container_title | IEEE access |
container_volume | 10 |
creator | Jhang, Yu-Syuan Wang, Szu-Ting Sheu, Ming-Hwa Wang, Szu-Hong Lai, Shin-Chi |
description | For long-term electrocardiogram (ECG) signal monitoring, a portable and small size acquisition device with Bluetooth low energy (BLE) communication is designed and integrated with a Nvidia Jetson Xavier NX for realizing the electrode motion artifact removal technique. The digitalized ECG codes are converted from a front-end circuit, which contains several amplifiers and filters in the acquisition system. Thereafter, a zero padding scheme is applied for each 10-bits data to separate them into two-bytes data for BLE transmission. Xavier Edge AI platform receives these transmitted data and removes the electrode motion (EM) noise using the proposed low memory shortcut connection-based denoised autoencoder (LMSC-DAE). The simulation results demonstrate that the proposed algorithm significantly improves the signal-to-noise ratio (SNR) by 5.41 dB under the condition of SNR in = 12 dB, compared with convolutional denoising autoencoder with long short-term memory (CNN-LSTM-DAE) method. For practical test, an Arduino DUE platform is employed to generate noise interference by controlling a commercial digital-to-analog convertor. By combining the proposed ECG acquisition device with a non-inverting weighted summer, it can be applied to verify the reproducibility of measurement for the proposed method. The measurement results clearly indicate that the proposed LMSC-DAE has a higher improvement of SNR and lower percentage root-mean-square difference than the state-of-the-art Fully Convolutional Denoising Autoencoder (FCN-DAE). |
doi_str_mv | 10.1109/ACCESS.2022.3178847 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9784947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9784947</ieee_id><doaj_id>oai_doaj_org_article_ed376052a46843e98c2b8e2b0e3aa667</doaj_id><sourcerecordid>2674075543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-bb563a31f5d7d822c135f9df0de93c12d99cc63f8aa0124c4f587541a3d5cd653</originalsourceid><addsrcrecordid>eNpNkd9u0zAYxSMEEtPYE-zGEtcp_m_nsoQwKhWBKIhLy7G_lFRp3NnupL0Az43XTBO-sXX8O-ezfKrqluAVIbj5sG7bbrdbUUzpihGlNVevqitKZFMzweTr_85vq5uUDrgsXSShrqq_mznDPto8hhl9gjTuZxQG9D3EbPsJUNfeoV0R7YTW7v48pvFC_h7zn4LDqd6CjfM479FHm8CjbgKXY_CAvoYLuY55HKzL6Accw0OJKZqdUXfswfti2D2mDMd31ZvBTglunvfr6tfn7mf7pd5-u9u0623tONa57nshmWVkEF55TakjTAyNH7CHhjlCfdM4J9mgrcWEcscHoZXgxDIvnJeCXVebJdcHezCnOB5tfDTBjuYihLg3tjzYTWDAMyWxoJZLzRk02tFeA-0xMGulVCXr_ZJ1iuH-DCmbQzjH8lPJUKk4VkJwVii2UC6GlCIML1MJNk_9maU_89Sfee6vuG4X1wgAL45Gad6U23-ZIJa2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674075543</pqid></control><display><type>article</type><title>Integration Design of Portable ECG Signal Acquisition With Deep-Learning Based Electrode Motion Artifact Removal on an Embedded System</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jhang, Yu-Syuan ; Wang, Szu-Ting ; Sheu, Ming-Hwa ; Wang, Szu-Hong ; Lai, Shin-Chi</creator><creatorcontrib>Jhang, Yu-Syuan ; Wang, Szu-Ting ; Sheu, Ming-Hwa ; Wang, Szu-Hong ; Lai, Shin-Chi</creatorcontrib><description>For long-term electrocardiogram (ECG) signal monitoring, a portable and small size acquisition device with Bluetooth low energy (BLE) communication is designed and integrated with a Nvidia Jetson Xavier NX for realizing the electrode motion artifact removal technique. The digitalized ECG codes are converted from a front-end circuit, which contains several amplifiers and filters in the acquisition system. Thereafter, a zero padding scheme is applied for each 10-bits data to separate them into two-bytes data for BLE transmission. Xavier Edge AI platform receives these transmitted data and removes the electrode motion (EM) noise using the proposed low memory shortcut connection-based denoised autoencoder (LMSC-DAE). The simulation results demonstrate that the proposed algorithm significantly improves the signal-to-noise ratio (SNR) by 5.41 dB under the condition of SNR in = 12 dB, compared with convolutional denoising autoencoder with long short-term memory (CNN-LSTM-DAE) method. For practical test, an Arduino DUE platform is employed to generate noise interference by controlling a commercial digital-to-analog convertor. By combining the proposed ECG acquisition device with a non-inverting weighted summer, it can be applied to verify the reproducibility of measurement for the proposed method. The measurement results clearly indicate that the proposed LMSC-DAE has a higher improvement of SNR and lower percentage root-mean-square difference than the state-of-the-art Fully Convolutional Denoising Autoencoder (FCN-DAE).</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3178847</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive filters ; Algorithms ; Artificial intelligence ; Bluetooth ; Circuits ; Convolution ; deep learning ; denoising autoencoder (DAE) ; ECG signal enhancement ; Electrocardiogram (ECG) ; Electrocardiography ; Electrodes ; embedded system ; Embedded systems ; Machine learning ; Noise ; Noise generation ; Noise measurement ; Noise reduction ; Portable equipment ; Signal monitoring ; Signal to noise ratio</subject><ispartof>IEEE access, 2022, Vol.10, p.57555-57564</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-bb563a31f5d7d822c135f9df0de93c12d99cc63f8aa0124c4f587541a3d5cd653</citedby><cites>FETCH-LOGICAL-c408t-bb563a31f5d7d822c135f9df0de93c12d99cc63f8aa0124c4f587541a3d5cd653</cites><orcidid>0000-0003-0011-3649 ; 0000-0002-3889-1764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9784947$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,4012,27616,27906,27907,27908,54916</link.rule.ids></links><search><creatorcontrib>Jhang, Yu-Syuan</creatorcontrib><creatorcontrib>Wang, Szu-Ting</creatorcontrib><creatorcontrib>Sheu, Ming-Hwa</creatorcontrib><creatorcontrib>Wang, Szu-Hong</creatorcontrib><creatorcontrib>Lai, Shin-Chi</creatorcontrib><title>Integration Design of Portable ECG Signal Acquisition With Deep-Learning Based Electrode Motion Artifact Removal on an Embedded System</title><title>IEEE access</title><addtitle>Access</addtitle><description>For long-term electrocardiogram (ECG) signal monitoring, a portable and small size acquisition device with Bluetooth low energy (BLE) communication is designed and integrated with a Nvidia Jetson Xavier NX for realizing the electrode motion artifact removal technique. The digitalized ECG codes are converted from a front-end circuit, which contains several amplifiers and filters in the acquisition system. Thereafter, a zero padding scheme is applied for each 10-bits data to separate them into two-bytes data for BLE transmission. Xavier Edge AI platform receives these transmitted data and removes the electrode motion (EM) noise using the proposed low memory shortcut connection-based denoised autoencoder (LMSC-DAE). The simulation results demonstrate that the proposed algorithm significantly improves the signal-to-noise ratio (SNR) by 5.41 dB under the condition of SNR in = 12 dB, compared with convolutional denoising autoencoder with long short-term memory (CNN-LSTM-DAE) method. For practical test, an Arduino DUE platform is employed to generate noise interference by controlling a commercial digital-to-analog convertor. By combining the proposed ECG acquisition device with a non-inverting weighted summer, it can be applied to verify the reproducibility of measurement for the proposed method. The measurement results clearly indicate that the proposed LMSC-DAE has a higher improvement of SNR and lower percentage root-mean-square difference than the state-of-the-art Fully Convolutional Denoising Autoencoder (FCN-DAE).</description><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bluetooth</subject><subject>Circuits</subject><subject>Convolution</subject><subject>deep learning</subject><subject>denoising autoencoder (DAE)</subject><subject>ECG signal enhancement</subject><subject>Electrocardiogram (ECG)</subject><subject>Electrocardiography</subject><subject>Electrodes</subject><subject>embedded system</subject><subject>Embedded systems</subject><subject>Machine learning</subject><subject>Noise</subject><subject>Noise generation</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Portable equipment</subject><subject>Signal monitoring</subject><subject>Signal to noise ratio</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd9u0zAYxSMEEtPYE-zGEtcp_m_nsoQwKhWBKIhLy7G_lFRp3NnupL0Az43XTBO-sXX8O-ezfKrqluAVIbj5sG7bbrdbUUzpihGlNVevqitKZFMzweTr_85vq5uUDrgsXSShrqq_mznDPto8hhl9gjTuZxQG9D3EbPsJUNfeoV0R7YTW7v48pvFC_h7zn4LDqd6CjfM479FHm8CjbgKXY_CAvoYLuY55HKzL6Accw0OJKZqdUXfswfti2D2mDMd31ZvBTglunvfr6tfn7mf7pd5-u9u0623tONa57nshmWVkEF55TakjTAyNH7CHhjlCfdM4J9mgrcWEcscHoZXgxDIvnJeCXVebJdcHezCnOB5tfDTBjuYihLg3tjzYTWDAMyWxoJZLzRk02tFeA-0xMGulVCXr_ZJ1iuH-DCmbQzjH8lPJUKk4VkJwVii2UC6GlCIML1MJNk_9maU_89Sfee6vuG4X1wgAL45Gad6U23-ZIJa2</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Jhang, Yu-Syuan</creator><creator>Wang, Szu-Ting</creator><creator>Sheu, Ming-Hwa</creator><creator>Wang, Szu-Hong</creator><creator>Lai, Shin-Chi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0011-3649</orcidid><orcidid>https://orcid.org/0000-0002-3889-1764</orcidid></search><sort><creationdate>2022</creationdate><title>Integration Design of Portable ECG Signal Acquisition With Deep-Learning Based Electrode Motion Artifact Removal on an Embedded System</title><author>Jhang, Yu-Syuan ; Wang, Szu-Ting ; Sheu, Ming-Hwa ; Wang, Szu-Hong ; Lai, Shin-Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-bb563a31f5d7d822c135f9df0de93c12d99cc63f8aa0124c4f587541a3d5cd653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bluetooth</topic><topic>Circuits</topic><topic>Convolution</topic><topic>deep learning</topic><topic>denoising autoencoder (DAE)</topic><topic>ECG signal enhancement</topic><topic>Electrocardiogram (ECG)</topic><topic>Electrocardiography</topic><topic>Electrodes</topic><topic>embedded system</topic><topic>Embedded systems</topic><topic>Machine learning</topic><topic>Noise</topic><topic>Noise generation</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Portable equipment</topic><topic>Signal monitoring</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jhang, Yu-Syuan</creatorcontrib><creatorcontrib>Wang, Szu-Ting</creatorcontrib><creatorcontrib>Sheu, Ming-Hwa</creatorcontrib><creatorcontrib>Wang, Szu-Hong</creatorcontrib><creatorcontrib>Lai, Shin-Chi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jhang, Yu-Syuan</au><au>Wang, Szu-Ting</au><au>Sheu, Ming-Hwa</au><au>Wang, Szu-Hong</au><au>Lai, Shin-Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration Design of Portable ECG Signal Acquisition With Deep-Learning Based Electrode Motion Artifact Removal on an Embedded System</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>57555</spage><epage>57564</epage><pages>57555-57564</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>For long-term electrocardiogram (ECG) signal monitoring, a portable and small size acquisition device with Bluetooth low energy (BLE) communication is designed and integrated with a Nvidia Jetson Xavier NX for realizing the electrode motion artifact removal technique. The digitalized ECG codes are converted from a front-end circuit, which contains several amplifiers and filters in the acquisition system. Thereafter, a zero padding scheme is applied for each 10-bits data to separate them into two-bytes data for BLE transmission. Xavier Edge AI platform receives these transmitted data and removes the electrode motion (EM) noise using the proposed low memory shortcut connection-based denoised autoencoder (LMSC-DAE). The simulation results demonstrate that the proposed algorithm significantly improves the signal-to-noise ratio (SNR) by 5.41 dB under the condition of SNR in = 12 dB, compared with convolutional denoising autoencoder with long short-term memory (CNN-LSTM-DAE) method. For practical test, an Arduino DUE platform is employed to generate noise interference by controlling a commercial digital-to-analog convertor. By combining the proposed ECG acquisition device with a non-inverting weighted summer, it can be applied to verify the reproducibility of measurement for the proposed method. The measurement results clearly indicate that the proposed LMSC-DAE has a higher improvement of SNR and lower percentage root-mean-square difference than the state-of-the-art Fully Convolutional Denoising Autoencoder (FCN-DAE).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3178847</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0011-3649</orcidid><orcidid>https://orcid.org/0000-0002-3889-1764</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.57555-57564 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9784947 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Adaptive filters Algorithms Artificial intelligence Bluetooth Circuits Convolution deep learning denoising autoencoder (DAE) ECG signal enhancement Electrocardiogram (ECG) Electrocardiography Electrodes embedded system Embedded systems Machine learning Noise Noise generation Noise measurement Noise reduction Portable equipment Signal monitoring Signal to noise ratio |
title | Integration Design of Portable ECG Signal Acquisition With Deep-Learning Based Electrode Motion Artifact Removal on an Embedded System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20Design%20of%20Portable%20ECG%20Signal%20Acquisition%20With%20Deep-Learning%20Based%20Electrode%20Motion%20Artifact%20Removal%20on%20an%20Embedded%20System&rft.jtitle=IEEE%20access&rft.au=Jhang,%20Yu-Syuan&rft.date=2022&rft.volume=10&rft.spage=57555&rft.epage=57564&rft.pages=57555-57564&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3178847&rft_dat=%3Cproquest_ieee_%3E2674075543%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674075543&rft_id=info:pmid/&rft_ieee_id=9784947&rft_doaj_id=oai_doaj_org_article_ed376052a46843e98c2b8e2b0e3aa667&rfr_iscdi=true |