Integration Design of Portable ECG Signal Acquisition With Deep-Learning Based Electrode Motion Artifact Removal on an Embedded System

For long-term electrocardiogram (ECG) signal monitoring, a portable and small size acquisition device with Bluetooth low energy (BLE) communication is designed and integrated with a Nvidia Jetson Xavier NX for realizing the electrode motion artifact removal technique. The digitalized ECG codes are c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.57555-57564
Hauptverfasser: Jhang, Yu-Syuan, Wang, Szu-Ting, Sheu, Ming-Hwa, Wang, Szu-Hong, Lai, Shin-Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57564
container_issue
container_start_page 57555
container_title IEEE access
container_volume 10
creator Jhang, Yu-Syuan
Wang, Szu-Ting
Sheu, Ming-Hwa
Wang, Szu-Hong
Lai, Shin-Chi
description For long-term electrocardiogram (ECG) signal monitoring, a portable and small size acquisition device with Bluetooth low energy (BLE) communication is designed and integrated with a Nvidia Jetson Xavier NX for realizing the electrode motion artifact removal technique. The digitalized ECG codes are converted from a front-end circuit, which contains several amplifiers and filters in the acquisition system. Thereafter, a zero padding scheme is applied for each 10-bits data to separate them into two-bytes data for BLE transmission. Xavier Edge AI platform receives these transmitted data and removes the electrode motion (EM) noise using the proposed low memory shortcut connection-based denoised autoencoder (LMSC-DAE). The simulation results demonstrate that the proposed algorithm significantly improves the signal-to-noise ratio (SNR) by 5.41 dB under the condition of SNR in = 12 dB, compared with convolutional denoising autoencoder with long short-term memory (CNN-LSTM-DAE) method. For practical test, an Arduino DUE platform is employed to generate noise interference by controlling a commercial digital-to-analog convertor. By combining the proposed ECG acquisition device with a non-inverting weighted summer, it can be applied to verify the reproducibility of measurement for the proposed method. The measurement results clearly indicate that the proposed LMSC-DAE has a higher improvement of SNR and lower percentage root-mean-square difference than the state-of-the-art Fully Convolutional Denoising Autoencoder (FCN-DAE).
doi_str_mv 10.1109/ACCESS.2022.3178847
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9784947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9784947</ieee_id><doaj_id>oai_doaj_org_article_ed376052a46843e98c2b8e2b0e3aa667</doaj_id><sourcerecordid>2674075543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-bb563a31f5d7d822c135f9df0de93c12d99cc63f8aa0124c4f587541a3d5cd653</originalsourceid><addsrcrecordid>eNpNkd9u0zAYxSMEEtPYE-zGEtcp_m_nsoQwKhWBKIhLy7G_lFRp3NnupL0Az43XTBO-sXX8O-ezfKrqluAVIbj5sG7bbrdbUUzpihGlNVevqitKZFMzweTr_85vq5uUDrgsXSShrqq_mznDPto8hhl9gjTuZxQG9D3EbPsJUNfeoV0R7YTW7v48pvFC_h7zn4LDqd6CjfM479FHm8CjbgKXY_CAvoYLuY55HKzL6Accw0OJKZqdUXfswfti2D2mDMd31ZvBTglunvfr6tfn7mf7pd5-u9u0623tONa57nshmWVkEF55TakjTAyNH7CHhjlCfdM4J9mgrcWEcscHoZXgxDIvnJeCXVebJdcHezCnOB5tfDTBjuYihLg3tjzYTWDAMyWxoJZLzRk02tFeA-0xMGulVCXr_ZJ1iuH-DCmbQzjH8lPJUKk4VkJwVii2UC6GlCIML1MJNk_9maU_89Sfee6vuG4X1wgAL45Gad6U23-ZIJa2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674075543</pqid></control><display><type>article</type><title>Integration Design of Portable ECG Signal Acquisition With Deep-Learning Based Electrode Motion Artifact Removal on an Embedded System</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jhang, Yu-Syuan ; Wang, Szu-Ting ; Sheu, Ming-Hwa ; Wang, Szu-Hong ; Lai, Shin-Chi</creator><creatorcontrib>Jhang, Yu-Syuan ; Wang, Szu-Ting ; Sheu, Ming-Hwa ; Wang, Szu-Hong ; Lai, Shin-Chi</creatorcontrib><description>For long-term electrocardiogram (ECG) signal monitoring, a portable and small size acquisition device with Bluetooth low energy (BLE) communication is designed and integrated with a Nvidia Jetson Xavier NX for realizing the electrode motion artifact removal technique. The digitalized ECG codes are converted from a front-end circuit, which contains several amplifiers and filters in the acquisition system. Thereafter, a zero padding scheme is applied for each 10-bits data to separate them into two-bytes data for BLE transmission. Xavier Edge AI platform receives these transmitted data and removes the electrode motion (EM) noise using the proposed low memory shortcut connection-based denoised autoencoder (LMSC-DAE). The simulation results demonstrate that the proposed algorithm significantly improves the signal-to-noise ratio (SNR) by 5.41 dB under the condition of SNR in = 12 dB, compared with convolutional denoising autoencoder with long short-term memory (CNN-LSTM-DAE) method. For practical test, an Arduino DUE platform is employed to generate noise interference by controlling a commercial digital-to-analog convertor. By combining the proposed ECG acquisition device with a non-inverting weighted summer, it can be applied to verify the reproducibility of measurement for the proposed method. The measurement results clearly indicate that the proposed LMSC-DAE has a higher improvement of SNR and lower percentage root-mean-square difference than the state-of-the-art Fully Convolutional Denoising Autoencoder (FCN-DAE).</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3178847</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive filters ; Algorithms ; Artificial intelligence ; Bluetooth ; Circuits ; Convolution ; deep learning ; denoising autoencoder (DAE) ; ECG signal enhancement ; Electrocardiogram (ECG) ; Electrocardiography ; Electrodes ; embedded system ; Embedded systems ; Machine learning ; Noise ; Noise generation ; Noise measurement ; Noise reduction ; Portable equipment ; Signal monitoring ; Signal to noise ratio</subject><ispartof>IEEE access, 2022, Vol.10, p.57555-57564</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-bb563a31f5d7d822c135f9df0de93c12d99cc63f8aa0124c4f587541a3d5cd653</citedby><cites>FETCH-LOGICAL-c408t-bb563a31f5d7d822c135f9df0de93c12d99cc63f8aa0124c4f587541a3d5cd653</cites><orcidid>0000-0003-0011-3649 ; 0000-0002-3889-1764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9784947$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,4012,27616,27906,27907,27908,54916</link.rule.ids></links><search><creatorcontrib>Jhang, Yu-Syuan</creatorcontrib><creatorcontrib>Wang, Szu-Ting</creatorcontrib><creatorcontrib>Sheu, Ming-Hwa</creatorcontrib><creatorcontrib>Wang, Szu-Hong</creatorcontrib><creatorcontrib>Lai, Shin-Chi</creatorcontrib><title>Integration Design of Portable ECG Signal Acquisition With Deep-Learning Based Electrode Motion Artifact Removal on an Embedded System</title><title>IEEE access</title><addtitle>Access</addtitle><description>For long-term electrocardiogram (ECG) signal monitoring, a portable and small size acquisition device with Bluetooth low energy (BLE) communication is designed and integrated with a Nvidia Jetson Xavier NX for realizing the electrode motion artifact removal technique. The digitalized ECG codes are converted from a front-end circuit, which contains several amplifiers and filters in the acquisition system. Thereafter, a zero padding scheme is applied for each 10-bits data to separate them into two-bytes data for BLE transmission. Xavier Edge AI platform receives these transmitted data and removes the electrode motion (EM) noise using the proposed low memory shortcut connection-based denoised autoencoder (LMSC-DAE). The simulation results demonstrate that the proposed algorithm significantly improves the signal-to-noise ratio (SNR) by 5.41 dB under the condition of SNR in = 12 dB, compared with convolutional denoising autoencoder with long short-term memory (CNN-LSTM-DAE) method. For practical test, an Arduino DUE platform is employed to generate noise interference by controlling a commercial digital-to-analog convertor. By combining the proposed ECG acquisition device with a non-inverting weighted summer, it can be applied to verify the reproducibility of measurement for the proposed method. The measurement results clearly indicate that the proposed LMSC-DAE has a higher improvement of SNR and lower percentage root-mean-square difference than the state-of-the-art Fully Convolutional Denoising Autoencoder (FCN-DAE).</description><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bluetooth</subject><subject>Circuits</subject><subject>Convolution</subject><subject>deep learning</subject><subject>denoising autoencoder (DAE)</subject><subject>ECG signal enhancement</subject><subject>Electrocardiogram (ECG)</subject><subject>Electrocardiography</subject><subject>Electrodes</subject><subject>embedded system</subject><subject>Embedded systems</subject><subject>Machine learning</subject><subject>Noise</subject><subject>Noise generation</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Portable equipment</subject><subject>Signal monitoring</subject><subject>Signal to noise ratio</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd9u0zAYxSMEEtPYE-zGEtcp_m_nsoQwKhWBKIhLy7G_lFRp3NnupL0Az43XTBO-sXX8O-ezfKrqluAVIbj5sG7bbrdbUUzpihGlNVevqitKZFMzweTr_85vq5uUDrgsXSShrqq_mznDPto8hhl9gjTuZxQG9D3EbPsJUNfeoV0R7YTW7v48pvFC_h7zn4LDqd6CjfM479FHm8CjbgKXY_CAvoYLuY55HKzL6Accw0OJKZqdUXfswfti2D2mDMd31ZvBTglunvfr6tfn7mf7pd5-u9u0623tONa57nshmWVkEF55TakjTAyNH7CHhjlCfdM4J9mgrcWEcscHoZXgxDIvnJeCXVebJdcHezCnOB5tfDTBjuYihLg3tjzYTWDAMyWxoJZLzRk02tFeA-0xMGulVCXr_ZJ1iuH-DCmbQzjH8lPJUKk4VkJwVii2UC6GlCIML1MJNk_9maU_89Sfee6vuG4X1wgAL45Gad6U23-ZIJa2</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Jhang, Yu-Syuan</creator><creator>Wang, Szu-Ting</creator><creator>Sheu, Ming-Hwa</creator><creator>Wang, Szu-Hong</creator><creator>Lai, Shin-Chi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0011-3649</orcidid><orcidid>https://orcid.org/0000-0002-3889-1764</orcidid></search><sort><creationdate>2022</creationdate><title>Integration Design of Portable ECG Signal Acquisition With Deep-Learning Based Electrode Motion Artifact Removal on an Embedded System</title><author>Jhang, Yu-Syuan ; Wang, Szu-Ting ; Sheu, Ming-Hwa ; Wang, Szu-Hong ; Lai, Shin-Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-bb563a31f5d7d822c135f9df0de93c12d99cc63f8aa0124c4f587541a3d5cd653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bluetooth</topic><topic>Circuits</topic><topic>Convolution</topic><topic>deep learning</topic><topic>denoising autoencoder (DAE)</topic><topic>ECG signal enhancement</topic><topic>Electrocardiogram (ECG)</topic><topic>Electrocardiography</topic><topic>Electrodes</topic><topic>embedded system</topic><topic>Embedded systems</topic><topic>Machine learning</topic><topic>Noise</topic><topic>Noise generation</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Portable equipment</topic><topic>Signal monitoring</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jhang, Yu-Syuan</creatorcontrib><creatorcontrib>Wang, Szu-Ting</creatorcontrib><creatorcontrib>Sheu, Ming-Hwa</creatorcontrib><creatorcontrib>Wang, Szu-Hong</creatorcontrib><creatorcontrib>Lai, Shin-Chi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jhang, Yu-Syuan</au><au>Wang, Szu-Ting</au><au>Sheu, Ming-Hwa</au><au>Wang, Szu-Hong</au><au>Lai, Shin-Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration Design of Portable ECG Signal Acquisition With Deep-Learning Based Electrode Motion Artifact Removal on an Embedded System</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>57555</spage><epage>57564</epage><pages>57555-57564</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>For long-term electrocardiogram (ECG) signal monitoring, a portable and small size acquisition device with Bluetooth low energy (BLE) communication is designed and integrated with a Nvidia Jetson Xavier NX for realizing the electrode motion artifact removal technique. The digitalized ECG codes are converted from a front-end circuit, which contains several amplifiers and filters in the acquisition system. Thereafter, a zero padding scheme is applied for each 10-bits data to separate them into two-bytes data for BLE transmission. Xavier Edge AI platform receives these transmitted data and removes the electrode motion (EM) noise using the proposed low memory shortcut connection-based denoised autoencoder (LMSC-DAE). The simulation results demonstrate that the proposed algorithm significantly improves the signal-to-noise ratio (SNR) by 5.41 dB under the condition of SNR in = 12 dB, compared with convolutional denoising autoencoder with long short-term memory (CNN-LSTM-DAE) method. For practical test, an Arduino DUE platform is employed to generate noise interference by controlling a commercial digital-to-analog convertor. By combining the proposed ECG acquisition device with a non-inverting weighted summer, it can be applied to verify the reproducibility of measurement for the proposed method. The measurement results clearly indicate that the proposed LMSC-DAE has a higher improvement of SNR and lower percentage root-mean-square difference than the state-of-the-art Fully Convolutional Denoising Autoencoder (FCN-DAE).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3178847</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0011-3649</orcidid><orcidid>https://orcid.org/0000-0002-3889-1764</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.57555-57564
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9784947
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Adaptive filters
Algorithms
Artificial intelligence
Bluetooth
Circuits
Convolution
deep learning
denoising autoencoder (DAE)
ECG signal enhancement
Electrocardiogram (ECG)
Electrocardiography
Electrodes
embedded system
Embedded systems
Machine learning
Noise
Noise generation
Noise measurement
Noise reduction
Portable equipment
Signal monitoring
Signal to noise ratio
title Integration Design of Portable ECG Signal Acquisition With Deep-Learning Based Electrode Motion Artifact Removal on an Embedded System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20Design%20of%20Portable%20ECG%20Signal%20Acquisition%20With%20Deep-Learning%20Based%20Electrode%20Motion%20Artifact%20Removal%20on%20an%20Embedded%20System&rft.jtitle=IEEE%20access&rft.au=Jhang,%20Yu-Syuan&rft.date=2022&rft.volume=10&rft.spage=57555&rft.epage=57564&rft.pages=57555-57564&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3178847&rft_dat=%3Cproquest_ieee_%3E2674075543%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674075543&rft_id=info:pmid/&rft_ieee_id=9784947&rft_doaj_id=oai_doaj_org_article_ed376052a46843e98c2b8e2b0e3aa667&rfr_iscdi=true