Novel Multilayer Extreme Learning Machine as a Massive MIMO Receiver for Millimeter Wave Communications

Wireless communication systems working in millimeter-wave (mmWave) frequency bands offer higher bandwidths than traditional radio frequency schemes. This technology allows multibeam steering and data multiplexing with the help of massive multiple-input multiple-output (MIMO) systems. However, suppor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.58965-58981
Hauptverfasser: Carrera, Diego Fernando, Vargas-Rosales, Cesar, Zabala-Blanco, David, Yungaicela-Naula, Noe M., Azurdia-Meza, Cesar A., Marey, Mohamed, Firoozabadi, Ali Dehghan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58981
container_issue
container_start_page 58965
container_title IEEE access
container_volume 10
creator Carrera, Diego Fernando
Vargas-Rosales, Cesar
Zabala-Blanco, David
Yungaicela-Naula, Noe M.
Azurdia-Meza, Cesar A.
Marey, Mohamed
Firoozabadi, Ali Dehghan
description Wireless communication systems working in millimeter-wave (mmWave) frequency bands offer higher bandwidths than traditional radio frequency schemes. This technology allows multibeam steering and data multiplexing with the help of massive multiple-input multiple-output (MIMO) systems. However, supporting large bandwidths at mmWave frequencies is challenging due to the use of large antenna arrays with beamforming, sampling signals with large bandwidths, and baseband signal processing operations at gigabit data rates. Due to the wider bandwidth and higher signal processing requirements of mmWave systems, low-complexity receiver algorithms become important. Previously reported investigations assumed the use of hybrid beamforming structures that reduce power consumption and signal processing tasks. Therefore, the use of artificial neural networks (ANNs) becomes relevant for the processing of mmWave signals as reported in earlier works. In this article, to carry out MIMO combining processing for mmWave communications, we propose a fully complex multilayer extreme learning machine (M-ELM) neural network. We investigate the tuning of the number of neurons in each hidden layer for the proposed method to maximize the system performance and decrease the complexity of the receiver. We compare the results of the introduced M-ELM algorithm with a fully complex extreme learning machine (ELM), fully real ELM, and M-ELM defined in the real plane in terms of spectral efficiency, bit error rate, computational complexity, and processing time. Furthermore, we compare the novel M-ELM strategy with traditional linear MIMO receivers, such as Maximum Ratio and Minimum Mean Square Error, as well as to a multilayer perceptron (MLP) neural network trained offline. The numerical results show that with a good balance between the overall performance and computational cost of the ANN, the fully complex M-ELM MIMO receiver outperforms the other evaluated schemes.
doi_str_mv 10.1109/ACCESS.2022.3178709
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9784835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9784835</ieee_id><doaj_id>oai_doaj_org_article_576f9a35693041bfa7cbe18327ed7ba5</doaj_id><sourcerecordid>2675044105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ef7ee5a0673566e6c35977d3fd5d0cf85005c4611c1e233a695b7792cb49939d3</originalsourceid><addsrcrecordid>eNpNUcFO4zAQjVastIjlC7hY4txix7EdH1FUoFKzSLCIozVxJsVVEoOdIvr3624QYi6eN3rvzVgvyy4YXTJG9dV1Va0eH5c5zfMlZ6pUVP_ITnMm9YILLk--9b-y8xh3NFWZRkKdZts__h17Uu_7yfVwwEBWH1PAAckGIYxu3JIa7IsbkUAkkECM7h1Jva7vyQNaTCCQzgdSu753A04JPkNiVH4Y9qOzMDk_xt_Zzw76iOef71n2dLP6W90tNve36-p6s7AFLacFdgpRAJWKCylRWi60Ui3vWtFS25WCUmELyZhlmHMO6RONUjq3TaE11y0_y9azb-thZ16DGyAcjAdn_g982BoIk7M9GqFkpyHt0ZwWrOlA2QZZyXOFrWpAJK_L2es1-Lc9xsns_D6M6XyTSyVoUTB6ZPGZZYOPMWD3tZVRcwzIzAGZY0DmM6CkuphVDhG_FFqVRZmC-geEE4tm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675044105</pqid></control><display><type>article</type><title>Novel Multilayer Extreme Learning Machine as a Massive MIMO Receiver for Millimeter Wave Communications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Carrera, Diego Fernando ; Vargas-Rosales, Cesar ; Zabala-Blanco, David ; Yungaicela-Naula, Noe M. ; Azurdia-Meza, Cesar A. ; Marey, Mohamed ; Firoozabadi, Ali Dehghan</creator><creatorcontrib>Carrera, Diego Fernando ; Vargas-Rosales, Cesar ; Zabala-Blanco, David ; Yungaicela-Naula, Noe M. ; Azurdia-Meza, Cesar A. ; Marey, Mohamed ; Firoozabadi, Ali Dehghan</creatorcontrib><description>Wireless communication systems working in millimeter-wave (mmWave) frequency bands offer higher bandwidths than traditional radio frequency schemes. This technology allows multibeam steering and data multiplexing with the help of massive multiple-input multiple-output (MIMO) systems. However, supporting large bandwidths at mmWave frequencies is challenging due to the use of large antenna arrays with beamforming, sampling signals with large bandwidths, and baseband signal processing operations at gigabit data rates. Due to the wider bandwidth and higher signal processing requirements of mmWave systems, low-complexity receiver algorithms become important. Previously reported investigations assumed the use of hybrid beamforming structures that reduce power consumption and signal processing tasks. Therefore, the use of artificial neural networks (ANNs) becomes relevant for the processing of mmWave signals as reported in earlier works. In this article, to carry out MIMO combining processing for mmWave communications, we propose a fully complex multilayer extreme learning machine (M-ELM) neural network. We investigate the tuning of the number of neurons in each hidden layer for the proposed method to maximize the system performance and decrease the complexity of the receiver. We compare the results of the introduced M-ELM algorithm with a fully complex extreme learning machine (ELM), fully real ELM, and M-ELM defined in the real plane in terms of spectral efficiency, bit error rate, computational complexity, and processing time. Furthermore, we compare the novel M-ELM strategy with traditional linear MIMO receivers, such as Maximum Ratio and Minimum Mean Square Error, as well as to a multilayer perceptron (MLP) neural network trained offline. The numerical results show that with a good balance between the overall performance and computational cost of the ANN, the fully complex M-ELM MIMO receiver outperforms the other evaluated schemes.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3178709</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G NR ; Algorithms ; Antenna arrays ; Artificial neural networks ; Bandwidths ; Beamforming ; Bit error rate ; Channel estimation ; Complexity ; Computing costs ; Frequencies ; Machine learning ; Massive MIMO ; millimeter wave ; Millimeter wave communication ; Millimeter waves ; MIMO communication ; multilayer ELM ; Multilayer perceptrons ; Multiplexing ; Neural networks ; Nonhomogeneous media ; OFDM ; Power consumption ; Receivers ; Signal processing ; Signal processing algorithms ; Steering ; Wireless communication systems</subject><ispartof>IEEE access, 2022, Vol.10, p.58965-58981</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ef7ee5a0673566e6c35977d3fd5d0cf85005c4611c1e233a695b7792cb49939d3</citedby><cites>FETCH-LOGICAL-c408t-ef7ee5a0673566e6c35977d3fd5d0cf85005c4611c1e233a695b7792cb49939d3</cites><orcidid>0000-0001-9011-1115 ; 0000-0002-5692-5673 ; 0000-0002-2105-7239 ; 0000-0002-3131-0672 ; 0000-0003-3461-4484 ; 0000-0002-6391-6863 ; 0000-0003-1770-471X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9784835$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Carrera, Diego Fernando</creatorcontrib><creatorcontrib>Vargas-Rosales, Cesar</creatorcontrib><creatorcontrib>Zabala-Blanco, David</creatorcontrib><creatorcontrib>Yungaicela-Naula, Noe M.</creatorcontrib><creatorcontrib>Azurdia-Meza, Cesar A.</creatorcontrib><creatorcontrib>Marey, Mohamed</creatorcontrib><creatorcontrib>Firoozabadi, Ali Dehghan</creatorcontrib><title>Novel Multilayer Extreme Learning Machine as a Massive MIMO Receiver for Millimeter Wave Communications</title><title>IEEE access</title><addtitle>Access</addtitle><description>Wireless communication systems working in millimeter-wave (mmWave) frequency bands offer higher bandwidths than traditional radio frequency schemes. This technology allows multibeam steering and data multiplexing with the help of massive multiple-input multiple-output (MIMO) systems. However, supporting large bandwidths at mmWave frequencies is challenging due to the use of large antenna arrays with beamforming, sampling signals with large bandwidths, and baseband signal processing operations at gigabit data rates. Due to the wider bandwidth and higher signal processing requirements of mmWave systems, low-complexity receiver algorithms become important. Previously reported investigations assumed the use of hybrid beamforming structures that reduce power consumption and signal processing tasks. Therefore, the use of artificial neural networks (ANNs) becomes relevant for the processing of mmWave signals as reported in earlier works. In this article, to carry out MIMO combining processing for mmWave communications, we propose a fully complex multilayer extreme learning machine (M-ELM) neural network. We investigate the tuning of the number of neurons in each hidden layer for the proposed method to maximize the system performance and decrease the complexity of the receiver. We compare the results of the introduced M-ELM algorithm with a fully complex extreme learning machine (ELM), fully real ELM, and M-ELM defined in the real plane in terms of spectral efficiency, bit error rate, computational complexity, and processing time. Furthermore, we compare the novel M-ELM strategy with traditional linear MIMO receivers, such as Maximum Ratio and Minimum Mean Square Error, as well as to a multilayer perceptron (MLP) neural network trained offline. The numerical results show that with a good balance between the overall performance and computational cost of the ANN, the fully complex M-ELM MIMO receiver outperforms the other evaluated schemes.</description><subject>5G NR</subject><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>Artificial neural networks</subject><subject>Bandwidths</subject><subject>Beamforming</subject><subject>Bit error rate</subject><subject>Channel estimation</subject><subject>Complexity</subject><subject>Computing costs</subject><subject>Frequencies</subject><subject>Machine learning</subject><subject>Massive MIMO</subject><subject>millimeter wave</subject><subject>Millimeter wave communication</subject><subject>Millimeter waves</subject><subject>MIMO communication</subject><subject>multilayer ELM</subject><subject>Multilayer perceptrons</subject><subject>Multiplexing</subject><subject>Neural networks</subject><subject>Nonhomogeneous media</subject><subject>OFDM</subject><subject>Power consumption</subject><subject>Receivers</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Steering</subject><subject>Wireless communication systems</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFO4zAQjVastIjlC7hY4txix7EdH1FUoFKzSLCIozVxJsVVEoOdIvr3624QYi6eN3rvzVgvyy4YXTJG9dV1Va0eH5c5zfMlZ6pUVP_ITnMm9YILLk--9b-y8xh3NFWZRkKdZts__h17Uu_7yfVwwEBWH1PAAckGIYxu3JIa7IsbkUAkkECM7h1Jva7vyQNaTCCQzgdSu753A04JPkNiVH4Y9qOzMDk_xt_Zzw76iOef71n2dLP6W90tNve36-p6s7AFLacFdgpRAJWKCylRWi60Ui3vWtFS25WCUmELyZhlmHMO6RONUjq3TaE11y0_y9azb-thZ16DGyAcjAdn_g982BoIk7M9GqFkpyHt0ZwWrOlA2QZZyXOFrWpAJK_L2es1-Lc9xsns_D6M6XyTSyVoUTB6ZPGZZYOPMWD3tZVRcwzIzAGZY0DmM6CkuphVDhG_FFqVRZmC-geEE4tm</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Carrera, Diego Fernando</creator><creator>Vargas-Rosales, Cesar</creator><creator>Zabala-Blanco, David</creator><creator>Yungaicela-Naula, Noe M.</creator><creator>Azurdia-Meza, Cesar A.</creator><creator>Marey, Mohamed</creator><creator>Firoozabadi, Ali Dehghan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9011-1115</orcidid><orcidid>https://orcid.org/0000-0002-5692-5673</orcidid><orcidid>https://orcid.org/0000-0002-2105-7239</orcidid><orcidid>https://orcid.org/0000-0002-3131-0672</orcidid><orcidid>https://orcid.org/0000-0003-3461-4484</orcidid><orcidid>https://orcid.org/0000-0002-6391-6863</orcidid><orcidid>https://orcid.org/0000-0003-1770-471X</orcidid></search><sort><creationdate>2022</creationdate><title>Novel Multilayer Extreme Learning Machine as a Massive MIMO Receiver for Millimeter Wave Communications</title><author>Carrera, Diego Fernando ; Vargas-Rosales, Cesar ; Zabala-Blanco, David ; Yungaicela-Naula, Noe M. ; Azurdia-Meza, Cesar A. ; Marey, Mohamed ; Firoozabadi, Ali Dehghan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ef7ee5a0673566e6c35977d3fd5d0cf85005c4611c1e233a695b7792cb49939d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>5G NR</topic><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>Artificial neural networks</topic><topic>Bandwidths</topic><topic>Beamforming</topic><topic>Bit error rate</topic><topic>Channel estimation</topic><topic>Complexity</topic><topic>Computing costs</topic><topic>Frequencies</topic><topic>Machine learning</topic><topic>Massive MIMO</topic><topic>millimeter wave</topic><topic>Millimeter wave communication</topic><topic>Millimeter waves</topic><topic>MIMO communication</topic><topic>multilayer ELM</topic><topic>Multilayer perceptrons</topic><topic>Multiplexing</topic><topic>Neural networks</topic><topic>Nonhomogeneous media</topic><topic>OFDM</topic><topic>Power consumption</topic><topic>Receivers</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Steering</topic><topic>Wireless communication systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrera, Diego Fernando</creatorcontrib><creatorcontrib>Vargas-Rosales, Cesar</creatorcontrib><creatorcontrib>Zabala-Blanco, David</creatorcontrib><creatorcontrib>Yungaicela-Naula, Noe M.</creatorcontrib><creatorcontrib>Azurdia-Meza, Cesar A.</creatorcontrib><creatorcontrib>Marey, Mohamed</creatorcontrib><creatorcontrib>Firoozabadi, Ali Dehghan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrera, Diego Fernando</au><au>Vargas-Rosales, Cesar</au><au>Zabala-Blanco, David</au><au>Yungaicela-Naula, Noe M.</au><au>Azurdia-Meza, Cesar A.</au><au>Marey, Mohamed</au><au>Firoozabadi, Ali Dehghan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Multilayer Extreme Learning Machine as a Massive MIMO Receiver for Millimeter Wave Communications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>58965</spage><epage>58981</epage><pages>58965-58981</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Wireless communication systems working in millimeter-wave (mmWave) frequency bands offer higher bandwidths than traditional radio frequency schemes. This technology allows multibeam steering and data multiplexing with the help of massive multiple-input multiple-output (MIMO) systems. However, supporting large bandwidths at mmWave frequencies is challenging due to the use of large antenna arrays with beamforming, sampling signals with large bandwidths, and baseband signal processing operations at gigabit data rates. Due to the wider bandwidth and higher signal processing requirements of mmWave systems, low-complexity receiver algorithms become important. Previously reported investigations assumed the use of hybrid beamforming structures that reduce power consumption and signal processing tasks. Therefore, the use of artificial neural networks (ANNs) becomes relevant for the processing of mmWave signals as reported in earlier works. In this article, to carry out MIMO combining processing for mmWave communications, we propose a fully complex multilayer extreme learning machine (M-ELM) neural network. We investigate the tuning of the number of neurons in each hidden layer for the proposed method to maximize the system performance and decrease the complexity of the receiver. We compare the results of the introduced M-ELM algorithm with a fully complex extreme learning machine (ELM), fully real ELM, and M-ELM defined in the real plane in terms of spectral efficiency, bit error rate, computational complexity, and processing time. Furthermore, we compare the novel M-ELM strategy with traditional linear MIMO receivers, such as Maximum Ratio and Minimum Mean Square Error, as well as to a multilayer perceptron (MLP) neural network trained offline. The numerical results show that with a good balance between the overall performance and computational cost of the ANN, the fully complex M-ELM MIMO receiver outperforms the other evaluated schemes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3178709</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9011-1115</orcidid><orcidid>https://orcid.org/0000-0002-5692-5673</orcidid><orcidid>https://orcid.org/0000-0002-2105-7239</orcidid><orcidid>https://orcid.org/0000-0002-3131-0672</orcidid><orcidid>https://orcid.org/0000-0003-3461-4484</orcidid><orcidid>https://orcid.org/0000-0002-6391-6863</orcidid><orcidid>https://orcid.org/0000-0003-1770-471X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.58965-58981
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9784835
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 5G NR
Algorithms
Antenna arrays
Artificial neural networks
Bandwidths
Beamforming
Bit error rate
Channel estimation
Complexity
Computing costs
Frequencies
Machine learning
Massive MIMO
millimeter wave
Millimeter wave communication
Millimeter waves
MIMO communication
multilayer ELM
Multilayer perceptrons
Multiplexing
Neural networks
Nonhomogeneous media
OFDM
Power consumption
Receivers
Signal processing
Signal processing algorithms
Steering
Wireless communication systems
title Novel Multilayer Extreme Learning Machine as a Massive MIMO Receiver for Millimeter Wave Communications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Multilayer%20Extreme%20Learning%20Machine%20as%20a%20Massive%20MIMO%20Receiver%20for%20Millimeter%20Wave%20Communications&rft.jtitle=IEEE%20access&rft.au=Carrera,%20Diego%20Fernando&rft.date=2022&rft.volume=10&rft.spage=58965&rft.epage=58981&rft.pages=58965-58981&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3178709&rft_dat=%3Cproquest_ieee_%3E2675044105%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675044105&rft_id=info:pmid/&rft_ieee_id=9784835&rft_doaj_id=oai_doaj_org_article_576f9a35693041bfa7cbe18327ed7ba5&rfr_iscdi=true