Novel Multilayer Extreme Learning Machine as a Massive MIMO Receiver for Millimeter Wave Communications
Wireless communication systems working in millimeter-wave (mmWave) frequency bands offer higher bandwidths than traditional radio frequency schemes. This technology allows multibeam steering and data multiplexing with the help of massive multiple-input multiple-output (MIMO) systems. However, suppor...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.58965-58981 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58981 |
---|---|
container_issue | |
container_start_page | 58965 |
container_title | IEEE access |
container_volume | 10 |
creator | Carrera, Diego Fernando Vargas-Rosales, Cesar Zabala-Blanco, David Yungaicela-Naula, Noe M. Azurdia-Meza, Cesar A. Marey, Mohamed Firoozabadi, Ali Dehghan |
description | Wireless communication systems working in millimeter-wave (mmWave) frequency bands offer higher bandwidths than traditional radio frequency schemes. This technology allows multibeam steering and data multiplexing with the help of massive multiple-input multiple-output (MIMO) systems. However, supporting large bandwidths at mmWave frequencies is challenging due to the use of large antenna arrays with beamforming, sampling signals with large bandwidths, and baseband signal processing operations at gigabit data rates. Due to the wider bandwidth and higher signal processing requirements of mmWave systems, low-complexity receiver algorithms become important. Previously reported investigations assumed the use of hybrid beamforming structures that reduce power consumption and signal processing tasks. Therefore, the use of artificial neural networks (ANNs) becomes relevant for the processing of mmWave signals as reported in earlier works. In this article, to carry out MIMO combining processing for mmWave communications, we propose a fully complex multilayer extreme learning machine (M-ELM) neural network. We investigate the tuning of the number of neurons in each hidden layer for the proposed method to maximize the system performance and decrease the complexity of the receiver. We compare the results of the introduced M-ELM algorithm with a fully complex extreme learning machine (ELM), fully real ELM, and M-ELM defined in the real plane in terms of spectral efficiency, bit error rate, computational complexity, and processing time. Furthermore, we compare the novel M-ELM strategy with traditional linear MIMO receivers, such as Maximum Ratio and Minimum Mean Square Error, as well as to a multilayer perceptron (MLP) neural network trained offline. The numerical results show that with a good balance between the overall performance and computational cost of the ANN, the fully complex M-ELM MIMO receiver outperforms the other evaluated schemes. |
doi_str_mv | 10.1109/ACCESS.2022.3178709 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9784835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9784835</ieee_id><doaj_id>oai_doaj_org_article_576f9a35693041bfa7cbe18327ed7ba5</doaj_id><sourcerecordid>2675044105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ef7ee5a0673566e6c35977d3fd5d0cf85005c4611c1e233a695b7792cb49939d3</originalsourceid><addsrcrecordid>eNpNUcFO4zAQjVastIjlC7hY4txix7EdH1FUoFKzSLCIozVxJsVVEoOdIvr3624QYi6eN3rvzVgvyy4YXTJG9dV1Va0eH5c5zfMlZ6pUVP_ITnMm9YILLk--9b-y8xh3NFWZRkKdZts__h17Uu_7yfVwwEBWH1PAAckGIYxu3JIa7IsbkUAkkECM7h1Jva7vyQNaTCCQzgdSu753A04JPkNiVH4Y9qOzMDk_xt_Zzw76iOef71n2dLP6W90tNve36-p6s7AFLacFdgpRAJWKCylRWi60Ui3vWtFS25WCUmELyZhlmHMO6RONUjq3TaE11y0_y9azb-thZ16DGyAcjAdn_g982BoIk7M9GqFkpyHt0ZwWrOlA2QZZyXOFrWpAJK_L2es1-Lc9xsns_D6M6XyTSyVoUTB6ZPGZZYOPMWD3tZVRcwzIzAGZY0DmM6CkuphVDhG_FFqVRZmC-geEE4tm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675044105</pqid></control><display><type>article</type><title>Novel Multilayer Extreme Learning Machine as a Massive MIMO Receiver for Millimeter Wave Communications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Carrera, Diego Fernando ; Vargas-Rosales, Cesar ; Zabala-Blanco, David ; Yungaicela-Naula, Noe M. ; Azurdia-Meza, Cesar A. ; Marey, Mohamed ; Firoozabadi, Ali Dehghan</creator><creatorcontrib>Carrera, Diego Fernando ; Vargas-Rosales, Cesar ; Zabala-Blanco, David ; Yungaicela-Naula, Noe M. ; Azurdia-Meza, Cesar A. ; Marey, Mohamed ; Firoozabadi, Ali Dehghan</creatorcontrib><description>Wireless communication systems working in millimeter-wave (mmWave) frequency bands offer higher bandwidths than traditional radio frequency schemes. This technology allows multibeam steering and data multiplexing with the help of massive multiple-input multiple-output (MIMO) systems. However, supporting large bandwidths at mmWave frequencies is challenging due to the use of large antenna arrays with beamforming, sampling signals with large bandwidths, and baseband signal processing operations at gigabit data rates. Due to the wider bandwidth and higher signal processing requirements of mmWave systems, low-complexity receiver algorithms become important. Previously reported investigations assumed the use of hybrid beamforming structures that reduce power consumption and signal processing tasks. Therefore, the use of artificial neural networks (ANNs) becomes relevant for the processing of mmWave signals as reported in earlier works. In this article, to carry out MIMO combining processing for mmWave communications, we propose a fully complex multilayer extreme learning machine (M-ELM) neural network. We investigate the tuning of the number of neurons in each hidden layer for the proposed method to maximize the system performance and decrease the complexity of the receiver. We compare the results of the introduced M-ELM algorithm with a fully complex extreme learning machine (ELM), fully real ELM, and M-ELM defined in the real plane in terms of spectral efficiency, bit error rate, computational complexity, and processing time. Furthermore, we compare the novel M-ELM strategy with traditional linear MIMO receivers, such as Maximum Ratio and Minimum Mean Square Error, as well as to a multilayer perceptron (MLP) neural network trained offline. The numerical results show that with a good balance between the overall performance and computational cost of the ANN, the fully complex M-ELM MIMO receiver outperforms the other evaluated schemes.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3178709</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G NR ; Algorithms ; Antenna arrays ; Artificial neural networks ; Bandwidths ; Beamforming ; Bit error rate ; Channel estimation ; Complexity ; Computing costs ; Frequencies ; Machine learning ; Massive MIMO ; millimeter wave ; Millimeter wave communication ; Millimeter waves ; MIMO communication ; multilayer ELM ; Multilayer perceptrons ; Multiplexing ; Neural networks ; Nonhomogeneous media ; OFDM ; Power consumption ; Receivers ; Signal processing ; Signal processing algorithms ; Steering ; Wireless communication systems</subject><ispartof>IEEE access, 2022, Vol.10, p.58965-58981</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ef7ee5a0673566e6c35977d3fd5d0cf85005c4611c1e233a695b7792cb49939d3</citedby><cites>FETCH-LOGICAL-c408t-ef7ee5a0673566e6c35977d3fd5d0cf85005c4611c1e233a695b7792cb49939d3</cites><orcidid>0000-0001-9011-1115 ; 0000-0002-5692-5673 ; 0000-0002-2105-7239 ; 0000-0002-3131-0672 ; 0000-0003-3461-4484 ; 0000-0002-6391-6863 ; 0000-0003-1770-471X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9784835$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Carrera, Diego Fernando</creatorcontrib><creatorcontrib>Vargas-Rosales, Cesar</creatorcontrib><creatorcontrib>Zabala-Blanco, David</creatorcontrib><creatorcontrib>Yungaicela-Naula, Noe M.</creatorcontrib><creatorcontrib>Azurdia-Meza, Cesar A.</creatorcontrib><creatorcontrib>Marey, Mohamed</creatorcontrib><creatorcontrib>Firoozabadi, Ali Dehghan</creatorcontrib><title>Novel Multilayer Extreme Learning Machine as a Massive MIMO Receiver for Millimeter Wave Communications</title><title>IEEE access</title><addtitle>Access</addtitle><description>Wireless communication systems working in millimeter-wave (mmWave) frequency bands offer higher bandwidths than traditional radio frequency schemes. This technology allows multibeam steering and data multiplexing with the help of massive multiple-input multiple-output (MIMO) systems. However, supporting large bandwidths at mmWave frequencies is challenging due to the use of large antenna arrays with beamforming, sampling signals with large bandwidths, and baseband signal processing operations at gigabit data rates. Due to the wider bandwidth and higher signal processing requirements of mmWave systems, low-complexity receiver algorithms become important. Previously reported investigations assumed the use of hybrid beamforming structures that reduce power consumption and signal processing tasks. Therefore, the use of artificial neural networks (ANNs) becomes relevant for the processing of mmWave signals as reported in earlier works. In this article, to carry out MIMO combining processing for mmWave communications, we propose a fully complex multilayer extreme learning machine (M-ELM) neural network. We investigate the tuning of the number of neurons in each hidden layer for the proposed method to maximize the system performance and decrease the complexity of the receiver. We compare the results of the introduced M-ELM algorithm with a fully complex extreme learning machine (ELM), fully real ELM, and M-ELM defined in the real plane in terms of spectral efficiency, bit error rate, computational complexity, and processing time. Furthermore, we compare the novel M-ELM strategy with traditional linear MIMO receivers, such as Maximum Ratio and Minimum Mean Square Error, as well as to a multilayer perceptron (MLP) neural network trained offline. The numerical results show that with a good balance between the overall performance and computational cost of the ANN, the fully complex M-ELM MIMO receiver outperforms the other evaluated schemes.</description><subject>5G NR</subject><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>Artificial neural networks</subject><subject>Bandwidths</subject><subject>Beamforming</subject><subject>Bit error rate</subject><subject>Channel estimation</subject><subject>Complexity</subject><subject>Computing costs</subject><subject>Frequencies</subject><subject>Machine learning</subject><subject>Massive MIMO</subject><subject>millimeter wave</subject><subject>Millimeter wave communication</subject><subject>Millimeter waves</subject><subject>MIMO communication</subject><subject>multilayer ELM</subject><subject>Multilayer perceptrons</subject><subject>Multiplexing</subject><subject>Neural networks</subject><subject>Nonhomogeneous media</subject><subject>OFDM</subject><subject>Power consumption</subject><subject>Receivers</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Steering</subject><subject>Wireless communication systems</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFO4zAQjVastIjlC7hY4txix7EdH1FUoFKzSLCIozVxJsVVEoOdIvr3624QYi6eN3rvzVgvyy4YXTJG9dV1Va0eH5c5zfMlZ6pUVP_ITnMm9YILLk--9b-y8xh3NFWZRkKdZts__h17Uu_7yfVwwEBWH1PAAckGIYxu3JIa7IsbkUAkkECM7h1Jva7vyQNaTCCQzgdSu753A04JPkNiVH4Y9qOzMDk_xt_Zzw76iOef71n2dLP6W90tNve36-p6s7AFLacFdgpRAJWKCylRWi60Ui3vWtFS25WCUmELyZhlmHMO6RONUjq3TaE11y0_y9azb-thZ16DGyAcjAdn_g982BoIk7M9GqFkpyHt0ZwWrOlA2QZZyXOFrWpAJK_L2es1-Lc9xsns_D6M6XyTSyVoUTB6ZPGZZYOPMWD3tZVRcwzIzAGZY0DmM6CkuphVDhG_FFqVRZmC-geEE4tm</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Carrera, Diego Fernando</creator><creator>Vargas-Rosales, Cesar</creator><creator>Zabala-Blanco, David</creator><creator>Yungaicela-Naula, Noe M.</creator><creator>Azurdia-Meza, Cesar A.</creator><creator>Marey, Mohamed</creator><creator>Firoozabadi, Ali Dehghan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9011-1115</orcidid><orcidid>https://orcid.org/0000-0002-5692-5673</orcidid><orcidid>https://orcid.org/0000-0002-2105-7239</orcidid><orcidid>https://orcid.org/0000-0002-3131-0672</orcidid><orcidid>https://orcid.org/0000-0003-3461-4484</orcidid><orcidid>https://orcid.org/0000-0002-6391-6863</orcidid><orcidid>https://orcid.org/0000-0003-1770-471X</orcidid></search><sort><creationdate>2022</creationdate><title>Novel Multilayer Extreme Learning Machine as a Massive MIMO Receiver for Millimeter Wave Communications</title><author>Carrera, Diego Fernando ; Vargas-Rosales, Cesar ; Zabala-Blanco, David ; Yungaicela-Naula, Noe M. ; Azurdia-Meza, Cesar A. ; Marey, Mohamed ; Firoozabadi, Ali Dehghan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ef7ee5a0673566e6c35977d3fd5d0cf85005c4611c1e233a695b7792cb49939d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>5G NR</topic><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>Artificial neural networks</topic><topic>Bandwidths</topic><topic>Beamforming</topic><topic>Bit error rate</topic><topic>Channel estimation</topic><topic>Complexity</topic><topic>Computing costs</topic><topic>Frequencies</topic><topic>Machine learning</topic><topic>Massive MIMO</topic><topic>millimeter wave</topic><topic>Millimeter wave communication</topic><topic>Millimeter waves</topic><topic>MIMO communication</topic><topic>multilayer ELM</topic><topic>Multilayer perceptrons</topic><topic>Multiplexing</topic><topic>Neural networks</topic><topic>Nonhomogeneous media</topic><topic>OFDM</topic><topic>Power consumption</topic><topic>Receivers</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Steering</topic><topic>Wireless communication systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrera, Diego Fernando</creatorcontrib><creatorcontrib>Vargas-Rosales, Cesar</creatorcontrib><creatorcontrib>Zabala-Blanco, David</creatorcontrib><creatorcontrib>Yungaicela-Naula, Noe M.</creatorcontrib><creatorcontrib>Azurdia-Meza, Cesar A.</creatorcontrib><creatorcontrib>Marey, Mohamed</creatorcontrib><creatorcontrib>Firoozabadi, Ali Dehghan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrera, Diego Fernando</au><au>Vargas-Rosales, Cesar</au><au>Zabala-Blanco, David</au><au>Yungaicela-Naula, Noe M.</au><au>Azurdia-Meza, Cesar A.</au><au>Marey, Mohamed</au><au>Firoozabadi, Ali Dehghan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Multilayer Extreme Learning Machine as a Massive MIMO Receiver for Millimeter Wave Communications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>58965</spage><epage>58981</epage><pages>58965-58981</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Wireless communication systems working in millimeter-wave (mmWave) frequency bands offer higher bandwidths than traditional radio frequency schemes. This technology allows multibeam steering and data multiplexing with the help of massive multiple-input multiple-output (MIMO) systems. However, supporting large bandwidths at mmWave frequencies is challenging due to the use of large antenna arrays with beamforming, sampling signals with large bandwidths, and baseband signal processing operations at gigabit data rates. Due to the wider bandwidth and higher signal processing requirements of mmWave systems, low-complexity receiver algorithms become important. Previously reported investigations assumed the use of hybrid beamforming structures that reduce power consumption and signal processing tasks. Therefore, the use of artificial neural networks (ANNs) becomes relevant for the processing of mmWave signals as reported in earlier works. In this article, to carry out MIMO combining processing for mmWave communications, we propose a fully complex multilayer extreme learning machine (M-ELM) neural network. We investigate the tuning of the number of neurons in each hidden layer for the proposed method to maximize the system performance and decrease the complexity of the receiver. We compare the results of the introduced M-ELM algorithm with a fully complex extreme learning machine (ELM), fully real ELM, and M-ELM defined in the real plane in terms of spectral efficiency, bit error rate, computational complexity, and processing time. Furthermore, we compare the novel M-ELM strategy with traditional linear MIMO receivers, such as Maximum Ratio and Minimum Mean Square Error, as well as to a multilayer perceptron (MLP) neural network trained offline. The numerical results show that with a good balance between the overall performance and computational cost of the ANN, the fully complex M-ELM MIMO receiver outperforms the other evaluated schemes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3178709</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9011-1115</orcidid><orcidid>https://orcid.org/0000-0002-5692-5673</orcidid><orcidid>https://orcid.org/0000-0002-2105-7239</orcidid><orcidid>https://orcid.org/0000-0002-3131-0672</orcidid><orcidid>https://orcid.org/0000-0003-3461-4484</orcidid><orcidid>https://orcid.org/0000-0002-6391-6863</orcidid><orcidid>https://orcid.org/0000-0003-1770-471X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.58965-58981 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9784835 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 5G NR Algorithms Antenna arrays Artificial neural networks Bandwidths Beamforming Bit error rate Channel estimation Complexity Computing costs Frequencies Machine learning Massive MIMO millimeter wave Millimeter wave communication Millimeter waves MIMO communication multilayer ELM Multilayer perceptrons Multiplexing Neural networks Nonhomogeneous media OFDM Power consumption Receivers Signal processing Signal processing algorithms Steering Wireless communication systems |
title | Novel Multilayer Extreme Learning Machine as a Massive MIMO Receiver for Millimeter Wave Communications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Multilayer%20Extreme%20Learning%20Machine%20as%20a%20Massive%20MIMO%20Receiver%20for%20Millimeter%20Wave%20Communications&rft.jtitle=IEEE%20access&rft.au=Carrera,%20Diego%20Fernando&rft.date=2022&rft.volume=10&rft.spage=58965&rft.epage=58981&rft.pages=58965-58981&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3178709&rft_dat=%3Cproquest_ieee_%3E2675044105%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675044105&rft_id=info:pmid/&rft_ieee_id=9784835&rft_doaj_id=oai_doaj_org_article_576f9a35693041bfa7cbe18327ed7ba5&rfr_iscdi=true |