Spoof Trace Disentanglement for Generic Face Anti-Spoofing
Prior studies show that the key to face anti-spoofing lies in the subtle image patterns, termed "spoof trace," e.g. , color distortion, 3D mask edge, and Moiré pattern. Spoof detection rooted on those spoof traces can improve not only the model's generalization but also the interpreta...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2023-03, Vol.45 (3), p.3813-3830 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3830 |
---|---|
container_issue | 3 |
container_start_page | 3813 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 45 |
creator | Liu, Yaojie Liu, Xiaoming |
description | Prior studies show that the key to face anti-spoofing lies in the subtle image patterns, termed "spoof trace," e.g. , color distortion, 3D mask edge, and Moiré pattern. Spoof detection rooted on those spoof traces can improve not only the model's generalization but also the interpretability. Yet, it is a challenging task due to the diversity of spoof attacks and the lack of ground truth for spoof traces. In this work, we propose a novel adversarial learning framework to explicitly estimate the spoof related patterns for face anti-spoofing. Inspired by the physical process, spoof faces are disentangled into spoof traces and the live counterparts in two steps: additive step and inpainting step. This two-step modeling can effectively narrow down the searching space for adversarial learning of spoof trace. Based on the trace modeling, the disentangled spoof traces can be utilized to reversely construct new spoof faces, which is used as data augmentation to effectively tackle long-tail spoof types. In addition, we apply frequency-based image decomposition in both the input and disentangled traces to better reflect the low-level vision cues. Our approach demonstrates superior spoof detection performance on 3 testing scenarios: known attacks, unknown attacks, and open-set attacks. Meanwhile, it provides a visually-convincing estimation of the spoof traces. Source code and pre-trained models will be publicly available upon publication. |
doi_str_mv | 10.1109/TPAMI.2022.3176387 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9779478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9779478</ieee_id><sourcerecordid>2773454861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-7042242a818d43a6a75f22a3c841c9418b13d6dd19f8c8501e6a4405f836b2eb3</originalsourceid><addsrcrecordid>eNpdkMlKA0EQhhtRTIy-gIIMePEysffFW4hGAxEF47np6ekJE2aJ3TMH397OYg6eqqC-v6r4ALhGcIwQVA_Lj8nbfIwhxmOCBCdSnIAhUkSlhBF1CoYQcZxKieUAXISwhhBRBsk5GBDGFMVYDsHj56Zti2TpjXXJUxlc05lmVbk6NknR-uTFNc6XNpltgUnTlekuUTarS3BWmCq4q0Mdga_Z83L6mi7eX-bTySK1hKEuFTBeothIJHNKDDeCFRgbYiVFVlEkM0RynudIFdJKBpHjhlLICkl4hl1GRuB-v3fj2-_ehU7XZbCuqkzj2j5ozLkQkjAqInr3D123vW_idxoLQSijkqNI4T1lfRuCd4Xe-LI2_kcjqLdm9c6s3prVB7MxdHtY3We1y4-RP5URuNkDpXPuOFZCKBq_-wVH-XoE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773454861</pqid></control><display><type>article</type><title>Spoof Trace Disentanglement for Generic Face Anti-Spoofing</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Yaojie ; Liu, Xiaoming</creator><creatorcontrib>Liu, Yaojie ; Liu, Xiaoming</creatorcontrib><description>Prior studies show that the key to face anti-spoofing lies in the subtle image patterns, termed "spoof trace," e.g. , color distortion, 3D mask edge, and Moiré pattern. Spoof detection rooted on those spoof traces can improve not only the model's generalization but also the interpretability. Yet, it is a challenging task due to the diversity of spoof attacks and the lack of ground truth for spoof traces. In this work, we propose a novel adversarial learning framework to explicitly estimate the spoof related patterns for face anti-spoofing. Inspired by the physical process, spoof faces are disentangled into spoof traces and the live counterparts in two steps: additive step and inpainting step. This two-step modeling can effectively narrow down the searching space for adversarial learning of spoof trace. Based on the trace modeling, the disentangled spoof traces can be utilized to reversely construct new spoof faces, which is used as data augmentation to effectively tackle long-tail spoof types. In addition, we apply frequency-based image decomposition in both the input and disentangled traces to better reflect the low-level vision cues. Our approach demonstrates superior spoof detection performance on 3 testing scenarios: known attacks, unknown attacks, and open-set attacks. Meanwhile, it provides a visually-convincing estimation of the spoof traces. Source code and pre-trained models will be publicly available upon publication.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3176387</identifier><identifier>PMID: 35594228</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cybersecurity ; Data models ; Deep learning ; face anti-spoofing ; Face recognition ; Faces ; Feature extraction ; Learning ; low-level vision ; Modelling ; Moire patterns ; Source code ; spoof traces ; Spoofing ; synthesis ; Task analysis ; Three-dimensional displays ; weak supervision</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-03, Vol.45 (3), p.3813-3830</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-7042242a818d43a6a75f22a3c841c9418b13d6dd19f8c8501e6a4405f836b2eb3</citedby><cites>FETCH-LOGICAL-c351t-7042242a818d43a6a75f22a3c841c9418b13d6dd19f8c8501e6a4405f836b2eb3</cites><orcidid>0000-0003-3756-7820 ; 0000-0003-3215-8753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9779478$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9779478$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35594228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yaojie</creatorcontrib><creatorcontrib>Liu, Xiaoming</creatorcontrib><title>Spoof Trace Disentanglement for Generic Face Anti-Spoofing</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Prior studies show that the key to face anti-spoofing lies in the subtle image patterns, termed "spoof trace," e.g. , color distortion, 3D mask edge, and Moiré pattern. Spoof detection rooted on those spoof traces can improve not only the model's generalization but also the interpretability. Yet, it is a challenging task due to the diversity of spoof attacks and the lack of ground truth for spoof traces. In this work, we propose a novel adversarial learning framework to explicitly estimate the spoof related patterns for face anti-spoofing. Inspired by the physical process, spoof faces are disentangled into spoof traces and the live counterparts in two steps: additive step and inpainting step. This two-step modeling can effectively narrow down the searching space for adversarial learning of spoof trace. Based on the trace modeling, the disentangled spoof traces can be utilized to reversely construct new spoof faces, which is used as data augmentation to effectively tackle long-tail spoof types. In addition, we apply frequency-based image decomposition in both the input and disentangled traces to better reflect the low-level vision cues. Our approach demonstrates superior spoof detection performance on 3 testing scenarios: known attacks, unknown attacks, and open-set attacks. Meanwhile, it provides a visually-convincing estimation of the spoof traces. Source code and pre-trained models will be publicly available upon publication.</description><subject>Cybersecurity</subject><subject>Data models</subject><subject>Deep learning</subject><subject>face anti-spoofing</subject><subject>Face recognition</subject><subject>Faces</subject><subject>Feature extraction</subject><subject>Learning</subject><subject>low-level vision</subject><subject>Modelling</subject><subject>Moire patterns</subject><subject>Source code</subject><subject>spoof traces</subject><subject>Spoofing</subject><subject>synthesis</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><subject>weak supervision</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMlKA0EQhhtRTIy-gIIMePEysffFW4hGAxEF47np6ekJE2aJ3TMH397OYg6eqqC-v6r4ALhGcIwQVA_Lj8nbfIwhxmOCBCdSnIAhUkSlhBF1CoYQcZxKieUAXISwhhBRBsk5GBDGFMVYDsHj56Zti2TpjXXJUxlc05lmVbk6NknR-uTFNc6XNpltgUnTlekuUTarS3BWmCq4q0Mdga_Z83L6mi7eX-bTySK1hKEuFTBeothIJHNKDDeCFRgbYiVFVlEkM0RynudIFdJKBpHjhlLICkl4hl1GRuB-v3fj2-_ehU7XZbCuqkzj2j5ozLkQkjAqInr3D123vW_idxoLQSijkqNI4T1lfRuCd4Xe-LI2_kcjqLdm9c6s3prVB7MxdHtY3We1y4-RP5URuNkDpXPuOFZCKBq_-wVH-XoE</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Liu, Yaojie</creator><creator>Liu, Xiaoming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3756-7820</orcidid><orcidid>https://orcid.org/0000-0003-3215-8753</orcidid></search><sort><creationdate>20230301</creationdate><title>Spoof Trace Disentanglement for Generic Face Anti-Spoofing</title><author>Liu, Yaojie ; Liu, Xiaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-7042242a818d43a6a75f22a3c841c9418b13d6dd19f8c8501e6a4405f836b2eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cybersecurity</topic><topic>Data models</topic><topic>Deep learning</topic><topic>face anti-spoofing</topic><topic>Face recognition</topic><topic>Faces</topic><topic>Feature extraction</topic><topic>Learning</topic><topic>low-level vision</topic><topic>Modelling</topic><topic>Moire patterns</topic><topic>Source code</topic><topic>spoof traces</topic><topic>Spoofing</topic><topic>synthesis</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><topic>weak supervision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yaojie</creatorcontrib><creatorcontrib>Liu, Xiaoming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yaojie</au><au>Liu, Xiaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spoof Trace Disentanglement for Generic Face Anti-Spoofing</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>45</volume><issue>3</issue><spage>3813</spage><epage>3830</epage><pages>3813-3830</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Prior studies show that the key to face anti-spoofing lies in the subtle image patterns, termed "spoof trace," e.g. , color distortion, 3D mask edge, and Moiré pattern. Spoof detection rooted on those spoof traces can improve not only the model's generalization but also the interpretability. Yet, it is a challenging task due to the diversity of spoof attacks and the lack of ground truth for spoof traces. In this work, we propose a novel adversarial learning framework to explicitly estimate the spoof related patterns for face anti-spoofing. Inspired by the physical process, spoof faces are disentangled into spoof traces and the live counterparts in two steps: additive step and inpainting step. This two-step modeling can effectively narrow down the searching space for adversarial learning of spoof trace. Based on the trace modeling, the disentangled spoof traces can be utilized to reversely construct new spoof faces, which is used as data augmentation to effectively tackle long-tail spoof types. In addition, we apply frequency-based image decomposition in both the input and disentangled traces to better reflect the low-level vision cues. Our approach demonstrates superior spoof detection performance on 3 testing scenarios: known attacks, unknown attacks, and open-set attacks. Meanwhile, it provides a visually-convincing estimation of the spoof traces. Source code and pre-trained models will be publicly available upon publication.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35594228</pmid><doi>10.1109/TPAMI.2022.3176387</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3756-7820</orcidid><orcidid>https://orcid.org/0000-0003-3215-8753</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-03, Vol.45 (3), p.3813-3830 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_ieee_primary_9779478 |
source | IEEE Electronic Library (IEL) |
subjects | Cybersecurity Data models Deep learning face anti-spoofing Face recognition Faces Feature extraction Learning low-level vision Modelling Moire patterns Source code spoof traces Spoofing synthesis Task analysis Three-dimensional displays weak supervision |
title | Spoof Trace Disentanglement for Generic Face Anti-Spoofing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T11%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spoof%20Trace%20Disentanglement%20for%20Generic%20Face%20Anti-Spoofing&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Liu,%20Yaojie&rft.date=2023-03-01&rft.volume=45&rft.issue=3&rft.spage=3813&rft.epage=3830&rft.pages=3813-3830&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3176387&rft_dat=%3Cproquest_RIE%3E2773454861%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773454861&rft_id=info:pmid/35594228&rft_ieee_id=9779478&rfr_iscdi=true |