Regional Scalp EEGs Analysis and Classification on Typical Childhood Epilepsy Syndromes
Epilepsy syndromes are typical childhood nervous system diseases that may include different types of epilepsy seizures commonly seen, but far more complex than seizures. Accurate classification of epilepsy syndromes is crucial for diagnosis and treatment. Scalp electroencephalogram (EEG) provides a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cognitive and developmental systems 2023-06, Vol.15 (2), p.662-674 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 674 |
---|---|
container_issue | 2 |
container_start_page | 662 |
container_title | IEEE transactions on cognitive and developmental systems |
container_volume | 15 |
creator | Cui, Xiaonan Cao, Jiuwen Hu, Dinghan Wang, Tianlei Jiang, Tiejia Gao, Feng |
description | Epilepsy syndromes are typical childhood nervous system diseases that may include different types of epilepsy seizures commonly seen, but far more complex than seizures. Accurate classification of epilepsy syndromes is crucial for diagnosis and treatment. Scalp electroencephalogram (EEG) provides a favorable basis for clinical diagnosis of epilepsy syndrome. In this article, we present a comprehensive analysis on the correlation between time-/frequency-domain regional scalp EEG features and typical epilepsy syndromes, and propose a transfer network-based classification model for epilepsy syndromes. Results on 63 children suffered from four typical epilepsy syndromes and 19 children from the normal control groups (NCGs) show that: 1) the features of the frontal polar region and the frontal region are always very similar, and the parietal region and the occipital region have similar features for each syndrome; 2) skewness is the most significant feature and Lemp-Ziv complexity (LZC) has the least contribution to distinguishing childhood epilepsy syndromes/NCGs; and 3) different individuals of the same syndrome have similarities, while the EEG characteristics of different syndromes are significantly different. A ResNet50 model based on deep transfer feature learning is applied to perform epilepsy syndromes/NCGs classification. The results show that feature selection based on the feature significance testing and correlation analysis can well enhance the classification performance. |
doi_str_mv | 10.1109/TCDS.2022.3175636 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9776483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9776483</ieee_id><sourcerecordid>2824112582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-bef479d3ae56e4684d577439a852c1467baf7d710ab7becf2eeffede11d20c303</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOOb-APEl4HNrfrVJHketUxgIbuJjSJuLy-jW2mwP_e_t2Bgc3H3hc8fxQeiRkpRSol_WxesqZYSxlFOZ5Ty_QRPGpU6U5vr2OjNyj2YxbgkhNOdSCTlBP1_wG9q9bfCqtk2Hy3IR8XzMQwwR273DRWNjDD7U9jCCeKz10I2pwcUmNG7Ttg6XXWigiwNeDXvXtzuID-jO2ybC7NKn6PutXBfvyfJz8VHMl0nNND8kFXghteMWshxEroTLpBRcW5WxmopcVtZLJymxlayg9gzAe3BAqWOk5oRP0fP5bte3f0eIB7Ntj_34fzRMMUEpyxQbKXqm6r6NsQdvuj7sbD8YSsxJoTkpNCeF5qJw3Hk67wQAuPJaylwozv8BtodtYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824112582</pqid></control><display><type>article</type><title>Regional Scalp EEGs Analysis and Classification on Typical Childhood Epilepsy Syndromes</title><source>IEEE Electronic Library (IEL)</source><creator>Cui, Xiaonan ; Cao, Jiuwen ; Hu, Dinghan ; Wang, Tianlei ; Jiang, Tiejia ; Gao, Feng</creator><creatorcontrib>Cui, Xiaonan ; Cao, Jiuwen ; Hu, Dinghan ; Wang, Tianlei ; Jiang, Tiejia ; Gao, Feng</creatorcontrib><description>Epilepsy syndromes are typical childhood nervous system diseases that may include different types of epilepsy seizures commonly seen, but far more complex than seizures. Accurate classification of epilepsy syndromes is crucial for diagnosis and treatment. Scalp electroencephalogram (EEG) provides a favorable basis for clinical diagnosis of epilepsy syndrome. In this article, we present a comprehensive analysis on the correlation between time-/frequency-domain regional scalp EEG features and typical epilepsy syndromes, and propose a transfer network-based classification model for epilepsy syndromes. Results on 63 children suffered from four typical epilepsy syndromes and 19 children from the normal control groups (NCGs) show that: 1) the features of the frontal polar region and the frontal region are always very similar, and the parietal region and the occipital region have similar features for each syndrome; 2) skewness is the most significant feature and Lemp-Ziv complexity (LZC) has the least contribution to distinguishing childhood epilepsy syndromes/NCGs; and 3) different individuals of the same syndrome have similarities, while the EEG characteristics of different syndromes are significantly different. A ResNet50 model based on deep transfer feature learning is applied to perform epilepsy syndromes/NCGs classification. The results show that feature selection based on the feature significance testing and correlation analysis can well enhance the classification performance.</description><identifier>ISSN: 2379-8920</identifier><identifier>EISSN: 2379-8939</identifier><identifier>DOI: 10.1109/TCDS.2022.3175636</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Childhood epilepsy syndrome ; Classification ; Complexity ; Convulsions & seizures ; Correlation ; Correlation analysis ; deep transfer learning ; Diagnosis ; Disorders ; Electroencephalography ; Epilepsy ; feature analysis ; Feature extraction ; Nervous system ; Pediatrics ; Polar environments ; regional scalp electroencephalogram (EEG) ; Scalp ; Seizures ; Temporal lobe ; time-/frequency-domain EEG feature</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2023-06, Vol.15 (2), p.662-674</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-bef479d3ae56e4684d577439a852c1467baf7d710ab7becf2eeffede11d20c303</citedby><cites>FETCH-LOGICAL-c293t-bef479d3ae56e4684d577439a852c1467baf7d710ab7becf2eeffede11d20c303</cites><orcidid>0000-0002-4498-4326 ; 0000-0003-2595-0451 ; 0000-0002-6480-5794 ; 0000-0003-4907-7212 ; 0000-0003-3688-8366 ; 0000-0003-1493-0041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9776483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9776483$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cui, Xiaonan</creatorcontrib><creatorcontrib>Cao, Jiuwen</creatorcontrib><creatorcontrib>Hu, Dinghan</creatorcontrib><creatorcontrib>Wang, Tianlei</creatorcontrib><creatorcontrib>Jiang, Tiejia</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><title>Regional Scalp EEGs Analysis and Classification on Typical Childhood Epilepsy Syndromes</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>Epilepsy syndromes are typical childhood nervous system diseases that may include different types of epilepsy seizures commonly seen, but far more complex than seizures. Accurate classification of epilepsy syndromes is crucial for diagnosis and treatment. Scalp electroencephalogram (EEG) provides a favorable basis for clinical diagnosis of epilepsy syndrome. In this article, we present a comprehensive analysis on the correlation between time-/frequency-domain regional scalp EEG features and typical epilepsy syndromes, and propose a transfer network-based classification model for epilepsy syndromes. Results on 63 children suffered from four typical epilepsy syndromes and 19 children from the normal control groups (NCGs) show that: 1) the features of the frontal polar region and the frontal region are always very similar, and the parietal region and the occipital region have similar features for each syndrome; 2) skewness is the most significant feature and Lemp-Ziv complexity (LZC) has the least contribution to distinguishing childhood epilepsy syndromes/NCGs; and 3) different individuals of the same syndrome have similarities, while the EEG characteristics of different syndromes are significantly different. A ResNet50 model based on deep transfer feature learning is applied to perform epilepsy syndromes/NCGs classification. The results show that feature selection based on the feature significance testing and correlation analysis can well enhance the classification performance.</description><subject>Childhood epilepsy syndrome</subject><subject>Classification</subject><subject>Complexity</subject><subject>Convulsions & seizures</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>deep transfer learning</subject><subject>Diagnosis</subject><subject>Disorders</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>feature analysis</subject><subject>Feature extraction</subject><subject>Nervous system</subject><subject>Pediatrics</subject><subject>Polar environments</subject><subject>regional scalp electroencephalogram (EEG)</subject><subject>Scalp</subject><subject>Seizures</subject><subject>Temporal lobe</subject><subject>time-/frequency-domain EEG feature</subject><issn>2379-8920</issn><issn>2379-8939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOOb-APEl4HNrfrVJHketUxgIbuJjSJuLy-jW2mwP_e_t2Bgc3H3hc8fxQeiRkpRSol_WxesqZYSxlFOZ5Ty_QRPGpU6U5vr2OjNyj2YxbgkhNOdSCTlBP1_wG9q9bfCqtk2Hy3IR8XzMQwwR273DRWNjDD7U9jCCeKz10I2pwcUmNG7Ttg6XXWigiwNeDXvXtzuID-jO2ybC7NKn6PutXBfvyfJz8VHMl0nNND8kFXghteMWshxEroTLpBRcW5WxmopcVtZLJymxlayg9gzAe3BAqWOk5oRP0fP5bte3f0eIB7Ntj_34fzRMMUEpyxQbKXqm6r6NsQdvuj7sbD8YSsxJoTkpNCeF5qJw3Hk67wQAuPJaylwozv8BtodtYw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Cui, Xiaonan</creator><creator>Cao, Jiuwen</creator><creator>Hu, Dinghan</creator><creator>Wang, Tianlei</creator><creator>Jiang, Tiejia</creator><creator>Gao, Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4498-4326</orcidid><orcidid>https://orcid.org/0000-0003-2595-0451</orcidid><orcidid>https://orcid.org/0000-0002-6480-5794</orcidid><orcidid>https://orcid.org/0000-0003-4907-7212</orcidid><orcidid>https://orcid.org/0000-0003-3688-8366</orcidid><orcidid>https://orcid.org/0000-0003-1493-0041</orcidid></search><sort><creationdate>20230601</creationdate><title>Regional Scalp EEGs Analysis and Classification on Typical Childhood Epilepsy Syndromes</title><author>Cui, Xiaonan ; Cao, Jiuwen ; Hu, Dinghan ; Wang, Tianlei ; Jiang, Tiejia ; Gao, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-bef479d3ae56e4684d577439a852c1467baf7d710ab7becf2eeffede11d20c303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Childhood epilepsy syndrome</topic><topic>Classification</topic><topic>Complexity</topic><topic>Convulsions & seizures</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>deep transfer learning</topic><topic>Diagnosis</topic><topic>Disorders</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>feature analysis</topic><topic>Feature extraction</topic><topic>Nervous system</topic><topic>Pediatrics</topic><topic>Polar environments</topic><topic>regional scalp electroencephalogram (EEG)</topic><topic>Scalp</topic><topic>Seizures</topic><topic>Temporal lobe</topic><topic>time-/frequency-domain EEG feature</topic><toplevel>online_resources</toplevel><creatorcontrib>Cui, Xiaonan</creatorcontrib><creatorcontrib>Cao, Jiuwen</creatorcontrib><creatorcontrib>Hu, Dinghan</creatorcontrib><creatorcontrib>Wang, Tianlei</creatorcontrib><creatorcontrib>Jiang, Tiejia</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cui, Xiaonan</au><au>Cao, Jiuwen</au><au>Hu, Dinghan</au><au>Wang, Tianlei</au><au>Jiang, Tiejia</au><au>Gao, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regional Scalp EEGs Analysis and Classification on Typical Childhood Epilepsy Syndromes</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>15</volume><issue>2</issue><spage>662</spage><epage>674</epage><pages>662-674</pages><issn>2379-8920</issn><eissn>2379-8939</eissn><coden>ITCDA4</coden><abstract>Epilepsy syndromes are typical childhood nervous system diseases that may include different types of epilepsy seizures commonly seen, but far more complex than seizures. Accurate classification of epilepsy syndromes is crucial for diagnosis and treatment. Scalp electroencephalogram (EEG) provides a favorable basis for clinical diagnosis of epilepsy syndrome. In this article, we present a comprehensive analysis on the correlation between time-/frequency-domain regional scalp EEG features and typical epilepsy syndromes, and propose a transfer network-based classification model for epilepsy syndromes. Results on 63 children suffered from four typical epilepsy syndromes and 19 children from the normal control groups (NCGs) show that: 1) the features of the frontal polar region and the frontal region are always very similar, and the parietal region and the occipital region have similar features for each syndrome; 2) skewness is the most significant feature and Lemp-Ziv complexity (LZC) has the least contribution to distinguishing childhood epilepsy syndromes/NCGs; and 3) different individuals of the same syndrome have similarities, while the EEG characteristics of different syndromes are significantly different. A ResNet50 model based on deep transfer feature learning is applied to perform epilepsy syndromes/NCGs classification. The results show that feature selection based on the feature significance testing and correlation analysis can well enhance the classification performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCDS.2022.3175636</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4498-4326</orcidid><orcidid>https://orcid.org/0000-0003-2595-0451</orcidid><orcidid>https://orcid.org/0000-0002-6480-5794</orcidid><orcidid>https://orcid.org/0000-0003-4907-7212</orcidid><orcidid>https://orcid.org/0000-0003-3688-8366</orcidid><orcidid>https://orcid.org/0000-0003-1493-0041</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-8920 |
ispartof | IEEE transactions on cognitive and developmental systems, 2023-06, Vol.15 (2), p.662-674 |
issn | 2379-8920 2379-8939 |
language | eng |
recordid | cdi_ieee_primary_9776483 |
source | IEEE Electronic Library (IEL) |
subjects | Childhood epilepsy syndrome Classification Complexity Convulsions & seizures Correlation Correlation analysis deep transfer learning Diagnosis Disorders Electroencephalography Epilepsy feature analysis Feature extraction Nervous system Pediatrics Polar environments regional scalp electroencephalogram (EEG) Scalp Seizures Temporal lobe time-/frequency-domain EEG feature |
title | Regional Scalp EEGs Analysis and Classification on Typical Childhood Epilepsy Syndromes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regional%20Scalp%20EEGs%20Analysis%20and%20Classification%20on%20Typical%20Childhood%20Epilepsy%20Syndromes&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Cui,%20Xiaonan&rft.date=2023-06-01&rft.volume=15&rft.issue=2&rft.spage=662&rft.epage=674&rft.pages=662-674&rft.issn=2379-8920&rft.eissn=2379-8939&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2022.3175636&rft_dat=%3Cproquest_RIE%3E2824112582%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824112582&rft_id=info:pmid/&rft_ieee_id=9776483&rfr_iscdi=true |