Learning to Maximize Speech Quality Directly Using MOS Prediction for Neural Text-to-Speech
Although recent neural text-to-speech (TTS) systems have achieved high-quality speech synthesis, there are cases where a TTS system generates low-quality speech, mainly caused by limited training data or information loss during knowledge distillation. Therefore, we propose a novel method to improve...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.52621-52629 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52629 |
---|---|
container_issue | |
container_start_page | 52621 |
container_title | IEEE access |
container_volume | 10 |
creator | Choi, Yeunju Jung, Youngmoon Suh, Youngjoo Kim, Hoirin |
description | Although recent neural text-to-speech (TTS) systems have achieved high-quality speech synthesis, there are cases where a TTS system generates low-quality speech, mainly caused by limited training data or information loss during knowledge distillation. Therefore, we propose a novel method to improve speech quality by training a TTS model under the supervision of perceptual loss, which measures the distance between the maximum possible speech quality score and the predicted one. We first pre-train a mean opinion score (MOS) prediction model and then train a TTS model to maximize the MOS of synthesized speech using the pre-trained MOS prediction model. The proposed method can be applied independently regardless of the TTS model architecture or the cause of speech quality degradation and efficiently without increasing the inference time or model complexity. The evaluation results for the MOS and phone error rate demonstrate that our proposed approach improves previous models in terms of both naturalness and intelligibility. |
doi_str_mv | 10.1109/ACCESS.2022.3175810 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9775804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9775804</ieee_id><doaj_id>oai_doaj_org_article_94c605add4db4b9fa8fb5f63361d4929</doaj_id><sourcerecordid>2669159184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-e6e294493123a569b0e2b3a17bfb84577172a3ad0c6102b4cea7af63282e5c33</originalsourceid><addsrcrecordid>eNpNUU1P20AQtVArEQG_gMtKnJ3u93qPUUgLUoBWSU89rMbrMWzkZMN6IxF-fZ0aoc5lRm_eezPSK4prRqeMUfttNp8vVqspp5xPBTOqYvSsmHCmbSmU0F_-m8-Lq77f0KGqAVJmUvxZIqRd2D2THMkDvIVteEey2iP6F_LrAF3IR3IbEvrcHcnv_sR8eFqRnwmb4HOIO9LGRB7xkKAja3zLZY7lqL8svrbQ9Xj10S-K9ffFen5XLp9-3M9ny9JLI3OJGrmV0grGBShta4q8FsBM3daVVMYww0FAQ71mlNfSIxhoteAVR-WFuCjuR9smwsbtU9hCOroIwf0DYnp2kHLwHTorvaYKmkY2taxtC1Vbq8FKaNZIy-3gdTN67VN8PWCf3SYe0m743nGtLVOWVXJgiZHlU-z7hO3nVUbdKRM3ZuJOmbiPTAbV9agKiPipsGbYUin-AmOwhsY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669159184</pqid></control><display><type>article</type><title>Learning to Maximize Speech Quality Directly Using MOS Prediction for Neural Text-to-Speech</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Choi, Yeunju ; Jung, Youngmoon ; Suh, Youngjoo ; Kim, Hoirin</creator><creatorcontrib>Choi, Yeunju ; Jung, Youngmoon ; Suh, Youngjoo ; Kim, Hoirin</creatorcontrib><description>Although recent neural text-to-speech (TTS) systems have achieved high-quality speech synthesis, there are cases where a TTS system generates low-quality speech, mainly caused by limited training data or information loss during knowledge distillation. Therefore, we propose a novel method to improve speech quality by training a TTS model under the supervision of perceptual loss, which measures the distance between the maximum possible speech quality score and the predicted one. We first pre-train a mean opinion score (MOS) prediction model and then train a TTS model to maximize the MOS of synthesized speech using the pre-trained MOS prediction model. The proposed method can be applied independently regardless of the TTS model architecture or the cause of speech quality degradation and efficiently without increasing the inference time or model complexity. The evaluation results for the MOS and phone error rate demonstrate that our proposed approach improves previous models in terms of both naturalness and intelligibility.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3175810</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Data models ; Distillation ; Intelligibility ; MOS prediction ; neural TTS ; perceptual loss ; Prediction models ; Predictions ; Predictive models ; Speech ; Speech recognition ; Speech synthesis ; Task analysis ; Training ; Training data ; Transformers</subject><ispartof>IEEE access, 2022, Vol.10, p.52621-52629</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-e6e294493123a569b0e2b3a17bfb84577172a3ad0c6102b4cea7af63282e5c33</citedby><cites>FETCH-LOGICAL-c474t-e6e294493123a569b0e2b3a17bfb84577172a3ad0c6102b4cea7af63282e5c33</cites><orcidid>0000-0002-8787-6982 ; 0000-0003-2192-2680 ; 0000-0002-4321-379X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9775804$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Choi, Yeunju</creatorcontrib><creatorcontrib>Jung, Youngmoon</creatorcontrib><creatorcontrib>Suh, Youngjoo</creatorcontrib><creatorcontrib>Kim, Hoirin</creatorcontrib><title>Learning to Maximize Speech Quality Directly Using MOS Prediction for Neural Text-to-Speech</title><title>IEEE access</title><addtitle>Access</addtitle><description>Although recent neural text-to-speech (TTS) systems have achieved high-quality speech synthesis, there are cases where a TTS system generates low-quality speech, mainly caused by limited training data or information loss during knowledge distillation. Therefore, we propose a novel method to improve speech quality by training a TTS model under the supervision of perceptual loss, which measures the distance between the maximum possible speech quality score and the predicted one. We first pre-train a mean opinion score (MOS) prediction model and then train a TTS model to maximize the MOS of synthesized speech using the pre-trained MOS prediction model. The proposed method can be applied independently regardless of the TTS model architecture or the cause of speech quality degradation and efficiently without increasing the inference time or model complexity. The evaluation results for the MOS and phone error rate demonstrate that our proposed approach improves previous models in terms of both naturalness and intelligibility.</description><subject>Data models</subject><subject>Distillation</subject><subject>Intelligibility</subject><subject>MOS prediction</subject><subject>neural TTS</subject><subject>perceptual loss</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Speech</subject><subject>Speech recognition</subject><subject>Speech synthesis</subject><subject>Task analysis</subject><subject>Training</subject><subject>Training data</subject><subject>Transformers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P20AQtVArEQG_gMtKnJ3u93qPUUgLUoBWSU89rMbrMWzkZMN6IxF-fZ0aoc5lRm_eezPSK4prRqeMUfttNp8vVqspp5xPBTOqYvSsmHCmbSmU0F_-m8-Lq77f0KGqAVJmUvxZIqRd2D2THMkDvIVteEey2iP6F_LrAF3IR3IbEvrcHcnv_sR8eFqRnwmb4HOIO9LGRB7xkKAja3zLZY7lqL8svrbQ9Xj10S-K9ffFen5XLp9-3M9ny9JLI3OJGrmV0grGBShta4q8FsBM3daVVMYww0FAQ71mlNfSIxhoteAVR-WFuCjuR9smwsbtU9hCOroIwf0DYnp2kHLwHTorvaYKmkY2taxtC1Vbq8FKaNZIy-3gdTN67VN8PWCf3SYe0m743nGtLVOWVXJgiZHlU-z7hO3nVUbdKRM3ZuJOmbiPTAbV9agKiPipsGbYUin-AmOwhsY</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Choi, Yeunju</creator><creator>Jung, Youngmoon</creator><creator>Suh, Youngjoo</creator><creator>Kim, Hoirin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8787-6982</orcidid><orcidid>https://orcid.org/0000-0003-2192-2680</orcidid><orcidid>https://orcid.org/0000-0002-4321-379X</orcidid></search><sort><creationdate>2022</creationdate><title>Learning to Maximize Speech Quality Directly Using MOS Prediction for Neural Text-to-Speech</title><author>Choi, Yeunju ; Jung, Youngmoon ; Suh, Youngjoo ; Kim, Hoirin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-e6e294493123a569b0e2b3a17bfb84577172a3ad0c6102b4cea7af63282e5c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data models</topic><topic>Distillation</topic><topic>Intelligibility</topic><topic>MOS prediction</topic><topic>neural TTS</topic><topic>perceptual loss</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Speech</topic><topic>Speech recognition</topic><topic>Speech synthesis</topic><topic>Task analysis</topic><topic>Training</topic><topic>Training data</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Yeunju</creatorcontrib><creatorcontrib>Jung, Youngmoon</creatorcontrib><creatorcontrib>Suh, Youngjoo</creatorcontrib><creatorcontrib>Kim, Hoirin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Yeunju</au><au>Jung, Youngmoon</au><au>Suh, Youngjoo</au><au>Kim, Hoirin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning to Maximize Speech Quality Directly Using MOS Prediction for Neural Text-to-Speech</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>52621</spage><epage>52629</epage><pages>52621-52629</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Although recent neural text-to-speech (TTS) systems have achieved high-quality speech synthesis, there are cases where a TTS system generates low-quality speech, mainly caused by limited training data or information loss during knowledge distillation. Therefore, we propose a novel method to improve speech quality by training a TTS model under the supervision of perceptual loss, which measures the distance between the maximum possible speech quality score and the predicted one. We first pre-train a mean opinion score (MOS) prediction model and then train a TTS model to maximize the MOS of synthesized speech using the pre-trained MOS prediction model. The proposed method can be applied independently regardless of the TTS model architecture or the cause of speech quality degradation and efficiently without increasing the inference time or model complexity. The evaluation results for the MOS and phone error rate demonstrate that our proposed approach improves previous models in terms of both naturalness and intelligibility.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3175810</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8787-6982</orcidid><orcidid>https://orcid.org/0000-0003-2192-2680</orcidid><orcidid>https://orcid.org/0000-0002-4321-379X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.52621-52629 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9775804 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Data models Distillation Intelligibility MOS prediction neural TTS perceptual loss Prediction models Predictions Predictive models Speech Speech recognition Speech synthesis Task analysis Training Training data Transformers |
title | Learning to Maximize Speech Quality Directly Using MOS Prediction for Neural Text-to-Speech |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20to%20Maximize%20Speech%20Quality%20Directly%20Using%20MOS%20Prediction%20for%20Neural%20Text-to-Speech&rft.jtitle=IEEE%20access&rft.au=Choi,%20Yeunju&rft.date=2022&rft.volume=10&rft.spage=52621&rft.epage=52629&rft.pages=52621-52629&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3175810&rft_dat=%3Cproquest_ieee_%3E2669159184%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2669159184&rft_id=info:pmid/&rft_ieee_id=9775804&rft_doaj_id=oai_doaj_org_article_94c605add4db4b9fa8fb5f63361d4929&rfr_iscdi=true |