Artery skeleton extraction using topographic and connected component labeling

In this paper, we propose a method for the detection and extraction of coronary artery skeletons (centerlines) based on the morphological processing of the topographic features of coronary angiogram images. Initially, the angiogram is pre-processed for noise reduction and artery enhancement through...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Maglaveras, N., Haris, K., Efstratiadis, S.N., Gourassas, J., Louridas, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue
container_start_page 17
container_title
container_volume
creator Maglaveras, N.
Haris, K.
Efstratiadis, S.N.
Gourassas, J.
Louridas, G.
description In this paper, we propose a method for the detection and extraction of coronary artery skeletons (centerlines) based on the morphological processing of the topographic features of coronary angiogram images. Initially, the angiogram is pre-processed for noise reduction and artery enhancement through directional morphological filtering by reconstruction. The topographic features of the resulting image are detected based on first and second-order image derivatives which characterize the local differential image structure. Using an artery model of a smooth elongated object with an approximately Gaussian smoothed semi-elliptical profile, the candidate skeleton areas are detected as sets of points consisting of ridges, saddle points and peaks. False skeleton areas, produced due to the noise sensitivity of the differentiation filters, have small size and are eliminated by connected component labeling (CCL). CCL may cause the elimination of a few true skeletons which are recovered by the morphological operation of binary reconstruction. Experimental results on clinical coronary angiograms are presented and discussed indicating the robust performance of the proposed method.
doi_str_mv 10.1109/CIC.2001.977580
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_977580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>977580</ieee_id><sourcerecordid>977580</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-bddae16a42f35e3493e79e4a194c46dfb3703f09b0eaa4b19de84e34d4ebb2333</originalsourceid><addsrcrecordid>eNotj11LwzAYhQMqOOeuBa_yB1rffDRpLkdRN5h4o9cjad7OaJeWNIL791bmuTnPxcOBQ8gdg5IxMA_Ntik5ACuN1lUNF-QGdA1Cc6X4JVkA16pQldTXZDVNnzCnAmVUtSAv65Qxnej0hT3mIVL8ycm2Ocz4PYV4oHkYh0Oy40doqY2etkOM2Gb8o-M4RIyZ9tZhP8u35Kqz_YSr_16S96fHt2ZT7F6ft816VwQGMhfOe4tMWck7UaGQRqA2KC0zspXKd05oEB0YB2itdMx4rOXseYnOcSHEktyfdwMi7scUjjad9ufz4hdl309M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Artery skeleton extraction using topographic and connected component labeling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Maglaveras, N. ; Haris, K. ; Efstratiadis, S.N. ; Gourassas, J. ; Louridas, G.</creator><creatorcontrib>Maglaveras, N. ; Haris, K. ; Efstratiadis, S.N. ; Gourassas, J. ; Louridas, G.</creatorcontrib><description>In this paper, we propose a method for the detection and extraction of coronary artery skeletons (centerlines) based on the morphological processing of the topographic features of coronary angiogram images. Initially, the angiogram is pre-processed for noise reduction and artery enhancement through directional morphological filtering by reconstruction. The topographic features of the resulting image are detected based on first and second-order image derivatives which characterize the local differential image structure. Using an artery model of a smooth elongated object with an approximately Gaussian smoothed semi-elliptical profile, the candidate skeleton areas are detected as sets of points consisting of ridges, saddle points and peaks. False skeleton areas, produced due to the noise sensitivity of the differentiation filters, have small size and are eliminated by connected component labeling (CCL). CCL may cause the elimination of a few true skeletons which are recovered by the morphological operation of binary reconstruction. Experimental results on clinical coronary angiograms are presented and discussed indicating the robust performance of the proposed method.</description><identifier>ISSN: 0276-6547</identifier><identifier>ISBN: 0780372662</identifier><identifier>ISBN: 9780780372665</identifier><identifier>DOI: 10.1109/CIC.2001.977580</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arteries ; Filtering ; Filters ; Image reconstruction ; Labeling ; Morphological operations ; Noise reduction ; Noise robustness ; Object detection ; Skeleton</subject><ispartof>Computers in Cardiology 2001. Vol.28 (Cat. No.01CH37287), 2001, p.17-20</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/977580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/977580$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maglaveras, N.</creatorcontrib><creatorcontrib>Haris, K.</creatorcontrib><creatorcontrib>Efstratiadis, S.N.</creatorcontrib><creatorcontrib>Gourassas, J.</creatorcontrib><creatorcontrib>Louridas, G.</creatorcontrib><title>Artery skeleton extraction using topographic and connected component labeling</title><title>Computers in Cardiology 2001. Vol.28 (Cat. No.01CH37287)</title><addtitle>CIC</addtitle><description>In this paper, we propose a method for the detection and extraction of coronary artery skeletons (centerlines) based on the morphological processing of the topographic features of coronary angiogram images. Initially, the angiogram is pre-processed for noise reduction and artery enhancement through directional morphological filtering by reconstruction. The topographic features of the resulting image are detected based on first and second-order image derivatives which characterize the local differential image structure. Using an artery model of a smooth elongated object with an approximately Gaussian smoothed semi-elliptical profile, the candidate skeleton areas are detected as sets of points consisting of ridges, saddle points and peaks. False skeleton areas, produced due to the noise sensitivity of the differentiation filters, have small size and are eliminated by connected component labeling (CCL). CCL may cause the elimination of a few true skeletons which are recovered by the morphological operation of binary reconstruction. Experimental results on clinical coronary angiograms are presented and discussed indicating the robust performance of the proposed method.</description><subject>Arteries</subject><subject>Filtering</subject><subject>Filters</subject><subject>Image reconstruction</subject><subject>Labeling</subject><subject>Morphological operations</subject><subject>Noise reduction</subject><subject>Noise robustness</subject><subject>Object detection</subject><subject>Skeleton</subject><issn>0276-6547</issn><isbn>0780372662</isbn><isbn>9780780372665</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj11LwzAYhQMqOOeuBa_yB1rffDRpLkdRN5h4o9cjad7OaJeWNIL791bmuTnPxcOBQ8gdg5IxMA_Ntik5ACuN1lUNF-QGdA1Cc6X4JVkA16pQldTXZDVNnzCnAmVUtSAv65Qxnej0hT3mIVL8ycm2Ocz4PYV4oHkYh0Oy40doqY2etkOM2Gb8o-M4RIyZ9tZhP8u35Kqz_YSr_16S96fHt2ZT7F6ft816VwQGMhfOe4tMWck7UaGQRqA2KC0zspXKd05oEB0YB2itdMx4rOXseYnOcSHEktyfdwMi7scUjjad9ufz4hdl309M</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Maglaveras, N.</creator><creator>Haris, K.</creator><creator>Efstratiadis, S.N.</creator><creator>Gourassas, J.</creator><creator>Louridas, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2001</creationdate><title>Artery skeleton extraction using topographic and connected component labeling</title><author>Maglaveras, N. ; Haris, K. ; Efstratiadis, S.N. ; Gourassas, J. ; Louridas, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-bddae16a42f35e3493e79e4a194c46dfb3703f09b0eaa4b19de84e34d4ebb2333</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Arteries</topic><topic>Filtering</topic><topic>Filters</topic><topic>Image reconstruction</topic><topic>Labeling</topic><topic>Morphological operations</topic><topic>Noise reduction</topic><topic>Noise robustness</topic><topic>Object detection</topic><topic>Skeleton</topic><toplevel>online_resources</toplevel><creatorcontrib>Maglaveras, N.</creatorcontrib><creatorcontrib>Haris, K.</creatorcontrib><creatorcontrib>Efstratiadis, S.N.</creatorcontrib><creatorcontrib>Gourassas, J.</creatorcontrib><creatorcontrib>Louridas, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maglaveras, N.</au><au>Haris, K.</au><au>Efstratiadis, S.N.</au><au>Gourassas, J.</au><au>Louridas, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Artery skeleton extraction using topographic and connected component labeling</atitle><btitle>Computers in Cardiology 2001. Vol.28 (Cat. No.01CH37287)</btitle><stitle>CIC</stitle><date>2001</date><risdate>2001</risdate><spage>17</spage><epage>20</epage><pages>17-20</pages><issn>0276-6547</issn><isbn>0780372662</isbn><isbn>9780780372665</isbn><abstract>In this paper, we propose a method for the detection and extraction of coronary artery skeletons (centerlines) based on the morphological processing of the topographic features of coronary angiogram images. Initially, the angiogram is pre-processed for noise reduction and artery enhancement through directional morphological filtering by reconstruction. The topographic features of the resulting image are detected based on first and second-order image derivatives which characterize the local differential image structure. Using an artery model of a smooth elongated object with an approximately Gaussian smoothed semi-elliptical profile, the candidate skeleton areas are detected as sets of points consisting of ridges, saddle points and peaks. False skeleton areas, produced due to the noise sensitivity of the differentiation filters, have small size and are eliminated by connected component labeling (CCL). CCL may cause the elimination of a few true skeletons which are recovered by the morphological operation of binary reconstruction. Experimental results on clinical coronary angiograms are presented and discussed indicating the robust performance of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/CIC.2001.977580</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0276-6547
ispartof Computers in Cardiology 2001. Vol.28 (Cat. No.01CH37287), 2001, p.17-20
issn 0276-6547
language eng
recordid cdi_ieee_primary_977580
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Arteries
Filtering
Filters
Image reconstruction
Labeling
Morphological operations
Noise reduction
Noise robustness
Object detection
Skeleton
title Artery skeleton extraction using topographic and connected component labeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Artery%20skeleton%20extraction%20using%20topographic%20and%20connected%20component%20labeling&rft.btitle=Computers%20in%20Cardiology%202001.%20Vol.28%20(Cat.%20No.01CH37287)&rft.au=Maglaveras,%20N.&rft.date=2001&rft.spage=17&rft.epage=20&rft.pages=17-20&rft.issn=0276-6547&rft.isbn=0780372662&rft.isbn_list=9780780372665&rft_id=info:doi/10.1109/CIC.2001.977580&rft_dat=%3Cieee_6IE%3E977580%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=977580&rfr_iscdi=true