Residual Spatial Attention Kernel Generation Network for Hyperspectral Image Classification With Small Sample Size

With the rapid development of deep learning, the convolutional neural networks (CNNs) have been widely used in hyperspectral image classification (HSIC) and achieved excellent performance. However, CNNs reuse the same kernel weights over different locations, thus resulting in the insufficient capabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-14
Hauptverfasser: Xu, Yanbing, Zhang, Yanmei, Yu, Chengcheng, Ji, Chao, Yue, Tingxuan, Li, Huan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the rapid development of deep learning, the convolutional neural networks (CNNs) have been widely used in hyperspectral image classification (HSIC) and achieved excellent performance. However, CNNs reuse the same kernel weights over different locations, thus resulting in the insufficient capability of capturing diversity spatial interactions. Moreover, CNNs usually require a large amount of training samples to optimize the learnable parameters. When training samples are limited, the classification performance of CNN tends to drop off a cliff. To tackle the aforementioned issues, a novel residual spatial attention kernel generation network (RSAKGN) is proposed for HSIC. First, a spatial attention kernel generation module (SAKGM) is built to extract discriminative semantic features, which can dynamically calculate the attention weights to generate specific spatial attention kernels over different locations. Then, we combine the SAKGM with residual learning framework by embedding the SAKGM into a bottleneck residual block to obtain the residual spatial attention block (RSAB). The RSAKGN is constructed by stacking several RSABs. Experimental results on three public HSI datasets demonstrate that the proposed RSAKGN method outperforms several state-of-the-arts with small sample size.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2022.3175494