A Simple Method for Constructing a Family of Hamiltonian Conservative Chaotic Systems
Conservative chaotic systems (CCSs) have unique advantages over dissipative chaotic systems (DCSs) in the fields of secure communication and pseudo-random number generators (PRNGs), etc. However, there are relatively fewer reports on CCSs than DCSs. To this end, this paper proposes an effective meth...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2022-08, Vol.69 (8), p.3328-3338 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3338 |
---|---|
container_issue | 8 |
container_start_page | 3328 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 69 |
creator | Ji'e, Musha Yan, Dengwei Sun, Shuqi Zhang, Fengqing Duan, Shukai Wang, Lidan |
description | Conservative chaotic systems (CCSs) have unique advantages over dissipative chaotic systems (DCSs) in the fields of secure communication and pseudo-random number generators (PRNGs), etc. However, there are relatively fewer reports on CCSs than DCSs. To this end, this paper proposes an effective method for constructing a family of Hamiltonian conservative chaotic systems (HCCSs) by letting any three of the four sub-bodies denoted by 4D generalized Euler equations share a rotation axis. From theoretical analysis to experimental verification, one of the proposed HCCSs is studied thoroughly to demonstrate the effectiveness of this method. The example system has an infinite number of equilibrium points, which belong to either centers or saddles, resulting in hidden chaos. Besides, through the bifurcation diagram, parametric chaotic set, and Lyapunov exponent, richly dynamic behaviors related to parameters are displayed. Moreover, the 3D phase portraits verify that the Hamiltonian energy is conservative. Numerous energy-related coexisting orbits are discovered in this system, such as the coexistence of quasi-periodic orbits, chaotic orbits, and chaotic quasi-periodic orbits. Furthermore, the breadboard-based circuit is implemented to illustrate the HCCS's physical feasibility. Finally, the PRNG based on the HCCS has excellent randomness in terms of NIST and TESTU01 test results. |
doi_str_mv | 10.1109/TCSI.2022.3172313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9773990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9773990</ieee_id><sourcerecordid>2695145063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9fa7a5a5f7b7ba290f286828e1f962d0b9ca0426d64c809faa3538bdbeab75ed3</originalsourceid><addsrcrecordid>eNo9kM1OAjEURhujiYg-gHHTxPVgf6bTdkkmIiQYF8C66cy0UsJMsS0kvL0zQlzdb3G-e28OAM8YTTBG8m1drhYTggiZUMwJxfQGjDBjIkMCFbdDzmUmKBH34CHGHUJEIopHYDOFK9ce9gZ-mrT1DbQ-wNJ3MYVjnVz3DTWc6dbtz9BbOB9S8p3T3R9kwkkndzKw3GqfXA1X55hMGx_BndX7aJ6ucww2s_d1Oc-WXx-LcrrMaiJpyqTVXDPNLK94pfuPLBGFIMJgKwvSoErWGuWkaIq8FqinNWVUVE1ldMWZaegYvF72HoL_OZqY1M4fQ9efVKSQDOcMFbSn8IWqg48xGKsOwbU6nBVGarCnBntqsKeu9vrOy6XjjDH_vOScyl7cL5v1a8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695145063</pqid></control><display><type>article</type><title>A Simple Method for Constructing a Family of Hamiltonian Conservative Chaotic Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Ji'e, Musha ; Yan, Dengwei ; Sun, Shuqi ; Zhang, Fengqing ; Duan, Shukai ; Wang, Lidan</creator><creatorcontrib>Ji'e, Musha ; Yan, Dengwei ; Sun, Shuqi ; Zhang, Fengqing ; Duan, Shukai ; Wang, Lidan</creatorcontrib><description>Conservative chaotic systems (CCSs) have unique advantages over dissipative chaotic systems (DCSs) in the fields of secure communication and pseudo-random number generators (PRNGs), etc. However, there are relatively fewer reports on CCSs than DCSs. To this end, this paper proposes an effective method for constructing a family of Hamiltonian conservative chaotic systems (HCCSs) by letting any three of the four sub-bodies denoted by 4D generalized Euler equations share a rotation axis. From theoretical analysis to experimental verification, one of the proposed HCCSs is studied thoroughly to demonstrate the effectiveness of this method. The example system has an infinite number of equilibrium points, which belong to either centers or saddles, resulting in hidden chaos. Besides, through the bifurcation diagram, parametric chaotic set, and Lyapunov exponent, richly dynamic behaviors related to parameters are displayed. Moreover, the 3D phase portraits verify that the Hamiltonian energy is conservative. Numerous energy-related coexisting orbits are discovered in this system, such as the coexistence of quasi-periodic orbits, chaotic orbits, and chaotic quasi-periodic orbits. Furthermore, the breadboard-based circuit is implemented to illustrate the HCCS's physical feasibility. Finally, the PRNG based on the HCCS has excellent randomness in terms of NIST and TESTU01 test results.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2022.3172313</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>analog circuit ; Casimir effect ; Casimir power ; Chaos theory ; Chaotic communication ; Circuits ; coexisting orbits ; Couplings ; Encryption ; Euler-Lagrange equation ; Hamiltonian conservative chaotic system ; hidden chaos ; Liapunov exponents ; Orbits ; Perturbation methods ; PRNGs and randomness tests ; Pseudorandom ; Random numbers ; Saddles ; System effectiveness ; Three-dimensional displays</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2022-08, Vol.69 (8), p.3328-3338</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9fa7a5a5f7b7ba290f286828e1f962d0b9ca0426d64c809faa3538bdbeab75ed3</citedby><cites>FETCH-LOGICAL-c293t-9fa7a5a5f7b7ba290f286828e1f962d0b9ca0426d64c809faa3538bdbeab75ed3</cites><orcidid>0000-0002-0040-3796 ; 0000-0003-0730-4202 ; 0000-0003-0147-6070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9773990$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9773990$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ji'e, Musha</creatorcontrib><creatorcontrib>Yan, Dengwei</creatorcontrib><creatorcontrib>Sun, Shuqi</creatorcontrib><creatorcontrib>Zhang, Fengqing</creatorcontrib><creatorcontrib>Duan, Shukai</creatorcontrib><creatorcontrib>Wang, Lidan</creatorcontrib><title>A Simple Method for Constructing a Family of Hamiltonian Conservative Chaotic Systems</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>Conservative chaotic systems (CCSs) have unique advantages over dissipative chaotic systems (DCSs) in the fields of secure communication and pseudo-random number generators (PRNGs), etc. However, there are relatively fewer reports on CCSs than DCSs. To this end, this paper proposes an effective method for constructing a family of Hamiltonian conservative chaotic systems (HCCSs) by letting any three of the four sub-bodies denoted by 4D generalized Euler equations share a rotation axis. From theoretical analysis to experimental verification, one of the proposed HCCSs is studied thoroughly to demonstrate the effectiveness of this method. The example system has an infinite number of equilibrium points, which belong to either centers or saddles, resulting in hidden chaos. Besides, through the bifurcation diagram, parametric chaotic set, and Lyapunov exponent, richly dynamic behaviors related to parameters are displayed. Moreover, the 3D phase portraits verify that the Hamiltonian energy is conservative. Numerous energy-related coexisting orbits are discovered in this system, such as the coexistence of quasi-periodic orbits, chaotic orbits, and chaotic quasi-periodic orbits. Furthermore, the breadboard-based circuit is implemented to illustrate the HCCS's physical feasibility. Finally, the PRNG based on the HCCS has excellent randomness in terms of NIST and TESTU01 test results.</description><subject>analog circuit</subject><subject>Casimir effect</subject><subject>Casimir power</subject><subject>Chaos theory</subject><subject>Chaotic communication</subject><subject>Circuits</subject><subject>coexisting orbits</subject><subject>Couplings</subject><subject>Encryption</subject><subject>Euler-Lagrange equation</subject><subject>Hamiltonian conservative chaotic system</subject><subject>hidden chaos</subject><subject>Liapunov exponents</subject><subject>Orbits</subject><subject>Perturbation methods</subject><subject>PRNGs and randomness tests</subject><subject>Pseudorandom</subject><subject>Random numbers</subject><subject>Saddles</subject><subject>System effectiveness</subject><subject>Three-dimensional displays</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OAjEURhujiYg-gHHTxPVgf6bTdkkmIiQYF8C66cy0UsJMsS0kvL0zQlzdb3G-e28OAM8YTTBG8m1drhYTggiZUMwJxfQGjDBjIkMCFbdDzmUmKBH34CHGHUJEIopHYDOFK9ce9gZ-mrT1DbQ-wNJ3MYVjnVz3DTWc6dbtz9BbOB9S8p3T3R9kwkkndzKw3GqfXA1X55hMGx_BndX7aJ6ucww2s_d1Oc-WXx-LcrrMaiJpyqTVXDPNLK94pfuPLBGFIMJgKwvSoErWGuWkaIq8FqinNWVUVE1ldMWZaegYvF72HoL_OZqY1M4fQ9efVKSQDOcMFbSn8IWqg48xGKsOwbU6nBVGarCnBntqsKeu9vrOy6XjjDH_vOScyl7cL5v1a8g</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Ji'e, Musha</creator><creator>Yan, Dengwei</creator><creator>Sun, Shuqi</creator><creator>Zhang, Fengqing</creator><creator>Duan, Shukai</creator><creator>Wang, Lidan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0040-3796</orcidid><orcidid>https://orcid.org/0000-0003-0730-4202</orcidid><orcidid>https://orcid.org/0000-0003-0147-6070</orcidid></search><sort><creationdate>20220801</creationdate><title>A Simple Method for Constructing a Family of Hamiltonian Conservative Chaotic Systems</title><author>Ji'e, Musha ; Yan, Dengwei ; Sun, Shuqi ; Zhang, Fengqing ; Duan, Shukai ; Wang, Lidan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9fa7a5a5f7b7ba290f286828e1f962d0b9ca0426d64c809faa3538bdbeab75ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>analog circuit</topic><topic>Casimir effect</topic><topic>Casimir power</topic><topic>Chaos theory</topic><topic>Chaotic communication</topic><topic>Circuits</topic><topic>coexisting orbits</topic><topic>Couplings</topic><topic>Encryption</topic><topic>Euler-Lagrange equation</topic><topic>Hamiltonian conservative chaotic system</topic><topic>hidden chaos</topic><topic>Liapunov exponents</topic><topic>Orbits</topic><topic>Perturbation methods</topic><topic>PRNGs and randomness tests</topic><topic>Pseudorandom</topic><topic>Random numbers</topic><topic>Saddles</topic><topic>System effectiveness</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji'e, Musha</creatorcontrib><creatorcontrib>Yan, Dengwei</creatorcontrib><creatorcontrib>Sun, Shuqi</creatorcontrib><creatorcontrib>Zhang, Fengqing</creatorcontrib><creatorcontrib>Duan, Shukai</creatorcontrib><creatorcontrib>Wang, Lidan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ji'e, Musha</au><au>Yan, Dengwei</au><au>Sun, Shuqi</au><au>Zhang, Fengqing</au><au>Duan, Shukai</au><au>Wang, Lidan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple Method for Constructing a Family of Hamiltonian Conservative Chaotic Systems</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>69</volume><issue>8</issue><spage>3328</spage><epage>3338</epage><pages>3328-3338</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>Conservative chaotic systems (CCSs) have unique advantages over dissipative chaotic systems (DCSs) in the fields of secure communication and pseudo-random number generators (PRNGs), etc. However, there are relatively fewer reports on CCSs than DCSs. To this end, this paper proposes an effective method for constructing a family of Hamiltonian conservative chaotic systems (HCCSs) by letting any three of the four sub-bodies denoted by 4D generalized Euler equations share a rotation axis. From theoretical analysis to experimental verification, one of the proposed HCCSs is studied thoroughly to demonstrate the effectiveness of this method. The example system has an infinite number of equilibrium points, which belong to either centers or saddles, resulting in hidden chaos. Besides, through the bifurcation diagram, parametric chaotic set, and Lyapunov exponent, richly dynamic behaviors related to parameters are displayed. Moreover, the 3D phase portraits verify that the Hamiltonian energy is conservative. Numerous energy-related coexisting orbits are discovered in this system, such as the coexistence of quasi-periodic orbits, chaotic orbits, and chaotic quasi-periodic orbits. Furthermore, the breadboard-based circuit is implemented to illustrate the HCCS's physical feasibility. Finally, the PRNG based on the HCCS has excellent randomness in terms of NIST and TESTU01 test results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2022.3172313</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0040-3796</orcidid><orcidid>https://orcid.org/0000-0003-0730-4202</orcidid><orcidid>https://orcid.org/0000-0003-0147-6070</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2022-08, Vol.69 (8), p.3328-3338 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_ieee_primary_9773990 |
source | IEEE Electronic Library (IEL) |
subjects | analog circuit Casimir effect Casimir power Chaos theory Chaotic communication Circuits coexisting orbits Couplings Encryption Euler-Lagrange equation Hamiltonian conservative chaotic system hidden chaos Liapunov exponents Orbits Perturbation methods PRNGs and randomness tests Pseudorandom Random numbers Saddles System effectiveness Three-dimensional displays |
title | A Simple Method for Constructing a Family of Hamiltonian Conservative Chaotic Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20Method%20for%20Constructing%20a%20Family%20of%20Hamiltonian%20Conservative%20Chaotic%20Systems&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Ji'e,%20Musha&rft.date=2022-08-01&rft.volume=69&rft.issue=8&rft.spage=3328&rft.epage=3338&rft.pages=3328-3338&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2022.3172313&rft_dat=%3Cproquest_RIE%3E2695145063%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695145063&rft_id=info:pmid/&rft_ieee_id=9773990&rfr_iscdi=true |