A Simple Method for Constructing a Family of Hamiltonian Conservative Chaotic Systems

Conservative chaotic systems (CCSs) have unique advantages over dissipative chaotic systems (DCSs) in the fields of secure communication and pseudo-random number generators (PRNGs), etc. However, there are relatively fewer reports on CCSs than DCSs. To this end, this paper proposes an effective meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2022-08, Vol.69 (8), p.3328-3338
Hauptverfasser: Ji'e, Musha, Yan, Dengwei, Sun, Shuqi, Zhang, Fengqing, Duan, Shukai, Wang, Lidan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3338
container_issue 8
container_start_page 3328
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 69
creator Ji'e, Musha
Yan, Dengwei
Sun, Shuqi
Zhang, Fengqing
Duan, Shukai
Wang, Lidan
description Conservative chaotic systems (CCSs) have unique advantages over dissipative chaotic systems (DCSs) in the fields of secure communication and pseudo-random number generators (PRNGs), etc. However, there are relatively fewer reports on CCSs than DCSs. To this end, this paper proposes an effective method for constructing a family of Hamiltonian conservative chaotic systems (HCCSs) by letting any three of the four sub-bodies denoted by 4D generalized Euler equations share a rotation axis. From theoretical analysis to experimental verification, one of the proposed HCCSs is studied thoroughly to demonstrate the effectiveness of this method. The example system has an infinite number of equilibrium points, which belong to either centers or saddles, resulting in hidden chaos. Besides, through the bifurcation diagram, parametric chaotic set, and Lyapunov exponent, richly dynamic behaviors related to parameters are displayed. Moreover, the 3D phase portraits verify that the Hamiltonian energy is conservative. Numerous energy-related coexisting orbits are discovered in this system, such as the coexistence of quasi-periodic orbits, chaotic orbits, and chaotic quasi-periodic orbits. Furthermore, the breadboard-based circuit is implemented to illustrate the HCCS's physical feasibility. Finally, the PRNG based on the HCCS has excellent randomness in terms of NIST and TESTU01 test results.
doi_str_mv 10.1109/TCSI.2022.3172313
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9773990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9773990</ieee_id><sourcerecordid>2695145063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9fa7a5a5f7b7ba290f286828e1f962d0b9ca0426d64c809faa3538bdbeab75ed3</originalsourceid><addsrcrecordid>eNo9kM1OAjEURhujiYg-gHHTxPVgf6bTdkkmIiQYF8C66cy0UsJMsS0kvL0zQlzdb3G-e28OAM8YTTBG8m1drhYTggiZUMwJxfQGjDBjIkMCFbdDzmUmKBH34CHGHUJEIopHYDOFK9ce9gZ-mrT1DbQ-wNJ3MYVjnVz3DTWc6dbtz9BbOB9S8p3T3R9kwkkndzKw3GqfXA1X55hMGx_BndX7aJ6ucww2s_d1Oc-WXx-LcrrMaiJpyqTVXDPNLK94pfuPLBGFIMJgKwvSoErWGuWkaIq8FqinNWVUVE1ldMWZaegYvF72HoL_OZqY1M4fQ9efVKSQDOcMFbSn8IWqg48xGKsOwbU6nBVGarCnBntqsKeu9vrOy6XjjDH_vOScyl7cL5v1a8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695145063</pqid></control><display><type>article</type><title>A Simple Method for Constructing a Family of Hamiltonian Conservative Chaotic Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Ji'e, Musha ; Yan, Dengwei ; Sun, Shuqi ; Zhang, Fengqing ; Duan, Shukai ; Wang, Lidan</creator><creatorcontrib>Ji'e, Musha ; Yan, Dengwei ; Sun, Shuqi ; Zhang, Fengqing ; Duan, Shukai ; Wang, Lidan</creatorcontrib><description>Conservative chaotic systems (CCSs) have unique advantages over dissipative chaotic systems (DCSs) in the fields of secure communication and pseudo-random number generators (PRNGs), etc. However, there are relatively fewer reports on CCSs than DCSs. To this end, this paper proposes an effective method for constructing a family of Hamiltonian conservative chaotic systems (HCCSs) by letting any three of the four sub-bodies denoted by 4D generalized Euler equations share a rotation axis. From theoretical analysis to experimental verification, one of the proposed HCCSs is studied thoroughly to demonstrate the effectiveness of this method. The example system has an infinite number of equilibrium points, which belong to either centers or saddles, resulting in hidden chaos. Besides, through the bifurcation diagram, parametric chaotic set, and Lyapunov exponent, richly dynamic behaviors related to parameters are displayed. Moreover, the 3D phase portraits verify that the Hamiltonian energy is conservative. Numerous energy-related coexisting orbits are discovered in this system, such as the coexistence of quasi-periodic orbits, chaotic orbits, and chaotic quasi-periodic orbits. Furthermore, the breadboard-based circuit is implemented to illustrate the HCCS's physical feasibility. Finally, the PRNG based on the HCCS has excellent randomness in terms of NIST and TESTU01 test results.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2022.3172313</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>analog circuit ; Casimir effect ; Casimir power ; Chaos theory ; Chaotic communication ; Circuits ; coexisting orbits ; Couplings ; Encryption ; Euler-Lagrange equation ; Hamiltonian conservative chaotic system ; hidden chaos ; Liapunov exponents ; Orbits ; Perturbation methods ; PRNGs and randomness tests ; Pseudorandom ; Random numbers ; Saddles ; System effectiveness ; Three-dimensional displays</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2022-08, Vol.69 (8), p.3328-3338</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9fa7a5a5f7b7ba290f286828e1f962d0b9ca0426d64c809faa3538bdbeab75ed3</citedby><cites>FETCH-LOGICAL-c293t-9fa7a5a5f7b7ba290f286828e1f962d0b9ca0426d64c809faa3538bdbeab75ed3</cites><orcidid>0000-0002-0040-3796 ; 0000-0003-0730-4202 ; 0000-0003-0147-6070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9773990$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9773990$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ji'e, Musha</creatorcontrib><creatorcontrib>Yan, Dengwei</creatorcontrib><creatorcontrib>Sun, Shuqi</creatorcontrib><creatorcontrib>Zhang, Fengqing</creatorcontrib><creatorcontrib>Duan, Shukai</creatorcontrib><creatorcontrib>Wang, Lidan</creatorcontrib><title>A Simple Method for Constructing a Family of Hamiltonian Conservative Chaotic Systems</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>Conservative chaotic systems (CCSs) have unique advantages over dissipative chaotic systems (DCSs) in the fields of secure communication and pseudo-random number generators (PRNGs), etc. However, there are relatively fewer reports on CCSs than DCSs. To this end, this paper proposes an effective method for constructing a family of Hamiltonian conservative chaotic systems (HCCSs) by letting any three of the four sub-bodies denoted by 4D generalized Euler equations share a rotation axis. From theoretical analysis to experimental verification, one of the proposed HCCSs is studied thoroughly to demonstrate the effectiveness of this method. The example system has an infinite number of equilibrium points, which belong to either centers or saddles, resulting in hidden chaos. Besides, through the bifurcation diagram, parametric chaotic set, and Lyapunov exponent, richly dynamic behaviors related to parameters are displayed. Moreover, the 3D phase portraits verify that the Hamiltonian energy is conservative. Numerous energy-related coexisting orbits are discovered in this system, such as the coexistence of quasi-periodic orbits, chaotic orbits, and chaotic quasi-periodic orbits. Furthermore, the breadboard-based circuit is implemented to illustrate the HCCS's physical feasibility. Finally, the PRNG based on the HCCS has excellent randomness in terms of NIST and TESTU01 test results.</description><subject>analog circuit</subject><subject>Casimir effect</subject><subject>Casimir power</subject><subject>Chaos theory</subject><subject>Chaotic communication</subject><subject>Circuits</subject><subject>coexisting orbits</subject><subject>Couplings</subject><subject>Encryption</subject><subject>Euler-Lagrange equation</subject><subject>Hamiltonian conservative chaotic system</subject><subject>hidden chaos</subject><subject>Liapunov exponents</subject><subject>Orbits</subject><subject>Perturbation methods</subject><subject>PRNGs and randomness tests</subject><subject>Pseudorandom</subject><subject>Random numbers</subject><subject>Saddles</subject><subject>System effectiveness</subject><subject>Three-dimensional displays</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OAjEURhujiYg-gHHTxPVgf6bTdkkmIiQYF8C66cy0UsJMsS0kvL0zQlzdb3G-e28OAM8YTTBG8m1drhYTggiZUMwJxfQGjDBjIkMCFbdDzmUmKBH34CHGHUJEIopHYDOFK9ce9gZ-mrT1DbQ-wNJ3MYVjnVz3DTWc6dbtz9BbOB9S8p3T3R9kwkkndzKw3GqfXA1X55hMGx_BndX7aJ6ucww2s_d1Oc-WXx-LcrrMaiJpyqTVXDPNLK94pfuPLBGFIMJgKwvSoErWGuWkaIq8FqinNWVUVE1ldMWZaegYvF72HoL_OZqY1M4fQ9efVKSQDOcMFbSn8IWqg48xGKsOwbU6nBVGarCnBntqsKeu9vrOy6XjjDH_vOScyl7cL5v1a8g</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Ji'e, Musha</creator><creator>Yan, Dengwei</creator><creator>Sun, Shuqi</creator><creator>Zhang, Fengqing</creator><creator>Duan, Shukai</creator><creator>Wang, Lidan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0040-3796</orcidid><orcidid>https://orcid.org/0000-0003-0730-4202</orcidid><orcidid>https://orcid.org/0000-0003-0147-6070</orcidid></search><sort><creationdate>20220801</creationdate><title>A Simple Method for Constructing a Family of Hamiltonian Conservative Chaotic Systems</title><author>Ji'e, Musha ; Yan, Dengwei ; Sun, Shuqi ; Zhang, Fengqing ; Duan, Shukai ; Wang, Lidan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9fa7a5a5f7b7ba290f286828e1f962d0b9ca0426d64c809faa3538bdbeab75ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>analog circuit</topic><topic>Casimir effect</topic><topic>Casimir power</topic><topic>Chaos theory</topic><topic>Chaotic communication</topic><topic>Circuits</topic><topic>coexisting orbits</topic><topic>Couplings</topic><topic>Encryption</topic><topic>Euler-Lagrange equation</topic><topic>Hamiltonian conservative chaotic system</topic><topic>hidden chaos</topic><topic>Liapunov exponents</topic><topic>Orbits</topic><topic>Perturbation methods</topic><topic>PRNGs and randomness tests</topic><topic>Pseudorandom</topic><topic>Random numbers</topic><topic>Saddles</topic><topic>System effectiveness</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji'e, Musha</creatorcontrib><creatorcontrib>Yan, Dengwei</creatorcontrib><creatorcontrib>Sun, Shuqi</creatorcontrib><creatorcontrib>Zhang, Fengqing</creatorcontrib><creatorcontrib>Duan, Shukai</creatorcontrib><creatorcontrib>Wang, Lidan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ji'e, Musha</au><au>Yan, Dengwei</au><au>Sun, Shuqi</au><au>Zhang, Fengqing</au><au>Duan, Shukai</au><au>Wang, Lidan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple Method for Constructing a Family of Hamiltonian Conservative Chaotic Systems</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>69</volume><issue>8</issue><spage>3328</spage><epage>3338</epage><pages>3328-3338</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>Conservative chaotic systems (CCSs) have unique advantages over dissipative chaotic systems (DCSs) in the fields of secure communication and pseudo-random number generators (PRNGs), etc. However, there are relatively fewer reports on CCSs than DCSs. To this end, this paper proposes an effective method for constructing a family of Hamiltonian conservative chaotic systems (HCCSs) by letting any three of the four sub-bodies denoted by 4D generalized Euler equations share a rotation axis. From theoretical analysis to experimental verification, one of the proposed HCCSs is studied thoroughly to demonstrate the effectiveness of this method. The example system has an infinite number of equilibrium points, which belong to either centers or saddles, resulting in hidden chaos. Besides, through the bifurcation diagram, parametric chaotic set, and Lyapunov exponent, richly dynamic behaviors related to parameters are displayed. Moreover, the 3D phase portraits verify that the Hamiltonian energy is conservative. Numerous energy-related coexisting orbits are discovered in this system, such as the coexistence of quasi-periodic orbits, chaotic orbits, and chaotic quasi-periodic orbits. Furthermore, the breadboard-based circuit is implemented to illustrate the HCCS's physical feasibility. Finally, the PRNG based on the HCCS has excellent randomness in terms of NIST and TESTU01 test results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2022.3172313</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0040-3796</orcidid><orcidid>https://orcid.org/0000-0003-0730-4202</orcidid><orcidid>https://orcid.org/0000-0003-0147-6070</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2022-08, Vol.69 (8), p.3328-3338
issn 1549-8328
1558-0806
language eng
recordid cdi_ieee_primary_9773990
source IEEE Electronic Library (IEL)
subjects analog circuit
Casimir effect
Casimir power
Chaos theory
Chaotic communication
Circuits
coexisting orbits
Couplings
Encryption
Euler-Lagrange equation
Hamiltonian conservative chaotic system
hidden chaos
Liapunov exponents
Orbits
Perturbation methods
PRNGs and randomness tests
Pseudorandom
Random numbers
Saddles
System effectiveness
Three-dimensional displays
title A Simple Method for Constructing a Family of Hamiltonian Conservative Chaotic Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20Method%20for%20Constructing%20a%20Family%20of%20Hamiltonian%20Conservative%20Chaotic%20Systems&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Ji'e,%20Musha&rft.date=2022-08-01&rft.volume=69&rft.issue=8&rft.spage=3328&rft.epage=3338&rft.pages=3328-3338&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2022.3172313&rft_dat=%3Cproquest_RIE%3E2695145063%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695145063&rft_id=info:pmid/&rft_ieee_id=9773990&rfr_iscdi=true