Dimensionality analysis of a simulation outcome space

Investigates the dimensionality characteristics of the outcome space of a combat simulation. The independent state variables of all of the outcome states for a simulation run for given event management policies were analyzed using techniques based on principal component analysis and singular value d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gilmer, J.B., Sullivan, F.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 671 vol.1
container_issue
container_start_page 663
container_title
container_volume 1
creator Gilmer, J.B.
Sullivan, F.J.
description Investigates the dimensionality characteristics of the outcome space of a combat simulation. The independent state variables of all of the outcome states for a simulation run for given event management policies were analyzed using techniques based on principal component analysis and singular value decomposition, to give metrics for dimensionality. The number of dimensions in the outcome space is indicative of variety of possible outcomes, a potentially important property in hierarchical simulation. Events were managed using random choices, multi-trajectory methods designed to give greater preference to high-probability trajectories, and by various methods guided by analysis of the impact of the various events. The number of dimensions could not be increased greatly by the event management techniques used for selecting event outcomes for multi-trajectory resolution. Beyond 1000 replication runs, the size of the state space did not even strongly influence the metrics.
doi_str_mv 10.1109/WSC.2001.977352
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_977352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>977352</ieee_id><sourcerecordid>977352</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-c63ed941384683f07f51fcebbc2b01b718864554d83c3b68681b790007d2eb703</originalsourceid><addsrcrecordid>eNotj81qwzAQhAWl0DbNudCTXsDuyitp5WNxfyHQQ1J6DJIsgYodh8g5-O0rSOfywQwMM4w9CKiFgPbpZ9vVDYCoWyJUzRW7AzKAhEB4w9Y5_0KRAir2LVMvaQyHnKaDHdK8cFu45JT5FLnlOY3nwc4l5dN59tMYeD5aH-7ZdbRDDut_rtj32-uu-6g2X--f3fOmSgLkXHmNoW-lQCO1wQgUlYg-OOcbB8KRMEZLpWRv0KPTRptitmUd9U1wBLhij5feFELYH09ptKdlfzmGf8CqQow</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dimensionality analysis of a simulation outcome space</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gilmer, J.B. ; Sullivan, F.J.</creator><creatorcontrib>Gilmer, J.B. ; Sullivan, F.J.</creatorcontrib><description>Investigates the dimensionality characteristics of the outcome space of a combat simulation. The independent state variables of all of the outcome states for a simulation run for given event management policies were analyzed using techniques based on principal component analysis and singular value decomposition, to give metrics for dimensionality. The number of dimensions in the outcome space is indicative of variety of possible outcomes, a potentially important property in hierarchical simulation. Events were managed using random choices, multi-trajectory methods designed to give greater preference to high-probability trajectories, and by various methods guided by analysis of the impact of the various events. The number of dimensions could not be increased greatly by the event management techniques used for selecting event outcomes for multi-trajectory resolution. Beyond 1000 replication runs, the size of the state space did not even strongly influence the metrics.</description><identifier>ISBN: 0780373073</identifier><identifier>ISBN: 9780780373075</identifier><identifier>DOI: 10.1109/WSC.2001.977352</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Calibration ; Context modeling ; Design methodology ; Discrete event simulation ; Extraterrestrial measurements ; Libraries ; Principal component analysis ; Singular value decomposition ; State-space methods</subject><ispartof>Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304), 2001, Vol.1, p.663-671 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/977352$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/977352$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gilmer, J.B.</creatorcontrib><creatorcontrib>Sullivan, F.J.</creatorcontrib><title>Dimensionality analysis of a simulation outcome space</title><title>Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304)</title><addtitle>WSC</addtitle><description>Investigates the dimensionality characteristics of the outcome space of a combat simulation. The independent state variables of all of the outcome states for a simulation run for given event management policies were analyzed using techniques based on principal component analysis and singular value decomposition, to give metrics for dimensionality. The number of dimensions in the outcome space is indicative of variety of possible outcomes, a potentially important property in hierarchical simulation. Events were managed using random choices, multi-trajectory methods designed to give greater preference to high-probability trajectories, and by various methods guided by analysis of the impact of the various events. The number of dimensions could not be increased greatly by the event management techniques used for selecting event outcomes for multi-trajectory resolution. Beyond 1000 replication runs, the size of the state space did not even strongly influence the metrics.</description><subject>Analytical models</subject><subject>Calibration</subject><subject>Context modeling</subject><subject>Design methodology</subject><subject>Discrete event simulation</subject><subject>Extraterrestrial measurements</subject><subject>Libraries</subject><subject>Principal component analysis</subject><subject>Singular value decomposition</subject><subject>State-space methods</subject><isbn>0780373073</isbn><isbn>9780780373075</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81qwzAQhAWl0DbNudCTXsDuyitp5WNxfyHQQ1J6DJIsgYodh8g5-O0rSOfywQwMM4w9CKiFgPbpZ9vVDYCoWyJUzRW7AzKAhEB4w9Y5_0KRAir2LVMvaQyHnKaDHdK8cFu45JT5FLnlOY3nwc4l5dN59tMYeD5aH-7ZdbRDDut_rtj32-uu-6g2X--f3fOmSgLkXHmNoW-lQCO1wQgUlYg-OOcbB8KRMEZLpWRv0KPTRptitmUd9U1wBLhij5feFELYH09ptKdlfzmGf8CqQow</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Gilmer, J.B.</creator><creator>Sullivan, F.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2001</creationdate><title>Dimensionality analysis of a simulation outcome space</title><author>Gilmer, J.B. ; Sullivan, F.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-c63ed941384683f07f51fcebbc2b01b718864554d83c3b68681b790007d2eb703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Analytical models</topic><topic>Calibration</topic><topic>Context modeling</topic><topic>Design methodology</topic><topic>Discrete event simulation</topic><topic>Extraterrestrial measurements</topic><topic>Libraries</topic><topic>Principal component analysis</topic><topic>Singular value decomposition</topic><topic>State-space methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Gilmer, J.B.</creatorcontrib><creatorcontrib>Sullivan, F.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gilmer, J.B.</au><au>Sullivan, F.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dimensionality analysis of a simulation outcome space</atitle><btitle>Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304)</btitle><stitle>WSC</stitle><date>2001</date><risdate>2001</risdate><volume>1</volume><spage>663</spage><epage>671 vol.1</epage><pages>663-671 vol.1</pages><isbn>0780373073</isbn><isbn>9780780373075</isbn><abstract>Investigates the dimensionality characteristics of the outcome space of a combat simulation. The independent state variables of all of the outcome states for a simulation run for given event management policies were analyzed using techniques based on principal component analysis and singular value decomposition, to give metrics for dimensionality. The number of dimensions in the outcome space is indicative of variety of possible outcomes, a potentially important property in hierarchical simulation. Events were managed using random choices, multi-trajectory methods designed to give greater preference to high-probability trajectories, and by various methods guided by analysis of the impact of the various events. The number of dimensions could not be increased greatly by the event management techniques used for selecting event outcomes for multi-trajectory resolution. Beyond 1000 replication runs, the size of the state space did not even strongly influence the metrics.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2001.977352</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780373073
ispartof Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304), 2001, Vol.1, p.663-671 vol.1
issn
language eng
recordid cdi_ieee_primary_977352
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analytical models
Calibration
Context modeling
Design methodology
Discrete event simulation
Extraterrestrial measurements
Libraries
Principal component analysis
Singular value decomposition
State-space methods
title Dimensionality analysis of a simulation outcome space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dimensionality%20analysis%20of%20a%20simulation%20outcome%20space&rft.btitle=Proceeding%20of%20the%202001%20Winter%20Simulation%20Conference%20(Cat.%20No.01CH37304)&rft.au=Gilmer,%20J.B.&rft.date=2001&rft.volume=1&rft.spage=663&rft.epage=671%20vol.1&rft.pages=663-671%20vol.1&rft.isbn=0780373073&rft.isbn_list=9780780373075&rft_id=info:doi/10.1109/WSC.2001.977352&rft_dat=%3Cieee_6IE%3E977352%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=977352&rfr_iscdi=true