A Bayesian Estimation of Confidence Limits for Multi-state System Vulnerability Assessment With IEMI

A Bayesian approach based on the vulnerability distribution is proposed to estimate the confidence limits of the state probability and the threat level of multistate electronic systems interfered by intentional electromagnetic interference (IEMI). The vulnerability distribution is used to describe t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electromagnetic compatibility 2022-08, Vol.64 (4), p.1219-1229
Hauptverfasser: Liu, Yu, Du, Peibing, Han, Feng, Cai, Libing, Qi, Hongxin, Xia, Hongfu, Wang, Jianguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1229
container_issue 4
container_start_page 1219
container_title IEEE transactions on electromagnetic compatibility
container_volume 64
creator Liu, Yu
Du, Peibing
Han, Feng
Cai, Libing
Qi, Hongxin
Xia, Hongfu
Wang, Jianguo
description A Bayesian approach based on the vulnerability distribution is proposed to estimate the confidence limits of the state probability and the threat level of multistate electronic systems interfered by intentional electromagnetic interference (IEMI). The vulnerability distribution is used to describe the state probability function of the multi-state system (MSS) for a given IEMI threat level. When a small number of test samples are under a specific threat level and prior MSS information is known, the posterior estimation of the state probability function can be obtained based on Bayesian theory. Furthermore, to effectively apply the state probability function to assess the vulnerability of the MSS, the uncertainty of the state probability function is discussed. Considering state probabilities under the same threat level as random variables, all these state probabilities also follow the Dirichlet distribution. Thus, the confidence limits of the posteriori state probability and the threat level can be inferred by the marginal distribution of the state probability, which is induced by combining the Dirichlet and vulnerability distributions. Finally, a case study is given to demonstrate the details of the calculation process of the vulnerability distribution, the state probability function, and the confidence limits under a lognormal distribution.
doi_str_mv 10.1109/TEMC.2022.3169820
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9772725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9772725</ieee_id><sourcerecordid>2703142039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7f4659290942135c5b777073e98456f0d4f61ddade54334c6440d90350661cea3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpfsbxskQBKrViQXnsrDQZC1d5FNtZ5O9JVcRqNNK5dzQHoVtKFpQS_bAtNvmCEcYWnKY6Y-QMzaiUWUIz9XWOZoTQLNFcyUt0FcJ-WoVkfIbqJX4sRwiu7HARomvL6PoO9xbnfWddDV0FeO1aFwO2vceboYkuCbGMgN_GEKHFH0PTgS93rnFxxMsQIIQWuog_XfzGq2KzukYXtmwC3PzNOXp_Krb5S7J-fV7ly3VSMc1joqxIpWaaaMEol5XcKaWI4qAzIVNLamFTWtdlDVJwLqpUCFJrwiVJU1pByefo_tR78P3PACGafT_4bjppmCKcCka4nih6oirfh-DBmoOf_vajocQcZZqjTHOUaf5kTpm7U8YBwD-vlWKKSf4L_5hvJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703142039</pqid></control><display><type>article</type><title>A Bayesian Estimation of Confidence Limits for Multi-state System Vulnerability Assessment With IEMI</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Yu ; Du, Peibing ; Han, Feng ; Cai, Libing ; Qi, Hongxin ; Xia, Hongfu ; Wang, Jianguo</creator><creatorcontrib>Liu, Yu ; Du, Peibing ; Han, Feng ; Cai, Libing ; Qi, Hongxin ; Xia, Hongfu ; Wang, Jianguo</creatorcontrib><description>A Bayesian approach based on the vulnerability distribution is proposed to estimate the confidence limits of the state probability and the threat level of multistate electronic systems interfered by intentional electromagnetic interference (IEMI). The vulnerability distribution is used to describe the state probability function of the multi-state system (MSS) for a given IEMI threat level. When a small number of test samples are under a specific threat level and prior MSS information is known, the posterior estimation of the state probability function can be obtained based on Bayesian theory. Furthermore, to effectively apply the state probability function to assess the vulnerability of the MSS, the uncertainty of the state probability function is discussed. Considering state probabilities under the same threat level as random variables, all these state probabilities also follow the Dirichlet distribution. Thus, the confidence limits of the posteriori state probability and the threat level can be inferred by the marginal distribution of the state probability, which is induced by combining the Dirichlet and vulnerability distributions. Finally, a case study is given to demonstrate the details of the calculation process of the vulnerability distribution, the state probability function, and the confidence limits under a lognormal distribution.</description><identifier>ISSN: 0018-9375</identifier><identifier>EISSN: 1558-187X</identifier><identifier>DOI: 10.1109/TEMC.2022.3169820</identifier><identifier>CODEN: IEMCAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Assessment ; Bayes methods ; Bayesian analysis ; Bayesian method ; Confidence limits ; Dirichlet problem ; Electromagnetic interference ; Electronic systems ; EMP radiation effects ; Estimation ; intentional electromagnetic interference (IEMI) ; multistate system ; Probability ; Probability density function ; Random variables ; Reliability theory ; Statistical analysis ; Uncertainty ; vulnerability ; Wires</subject><ispartof>IEEE transactions on electromagnetic compatibility, 2022-08, Vol.64 (4), p.1219-1229</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7f4659290942135c5b777073e98456f0d4f61ddade54334c6440d90350661cea3</citedby><cites>FETCH-LOGICAL-c293t-7f4659290942135c5b777073e98456f0d4f61ddade54334c6440d90350661cea3</cites><orcidid>0000-0003-4492-3766 ; 0000-0002-9457-9425 ; 0000-0002-7971-7842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9772725$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9772725$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Du, Peibing</creatorcontrib><creatorcontrib>Han, Feng</creatorcontrib><creatorcontrib>Cai, Libing</creatorcontrib><creatorcontrib>Qi, Hongxin</creatorcontrib><creatorcontrib>Xia, Hongfu</creatorcontrib><creatorcontrib>Wang, Jianguo</creatorcontrib><title>A Bayesian Estimation of Confidence Limits for Multi-state System Vulnerability Assessment With IEMI</title><title>IEEE transactions on electromagnetic compatibility</title><addtitle>TEMC</addtitle><description>A Bayesian approach based on the vulnerability distribution is proposed to estimate the confidence limits of the state probability and the threat level of multistate electronic systems interfered by intentional electromagnetic interference (IEMI). The vulnerability distribution is used to describe the state probability function of the multi-state system (MSS) for a given IEMI threat level. When a small number of test samples are under a specific threat level and prior MSS information is known, the posterior estimation of the state probability function can be obtained based on Bayesian theory. Furthermore, to effectively apply the state probability function to assess the vulnerability of the MSS, the uncertainty of the state probability function is discussed. Considering state probabilities under the same threat level as random variables, all these state probabilities also follow the Dirichlet distribution. Thus, the confidence limits of the posteriori state probability and the threat level can be inferred by the marginal distribution of the state probability, which is induced by combining the Dirichlet and vulnerability distributions. Finally, a case study is given to demonstrate the details of the calculation process of the vulnerability distribution, the state probability function, and the confidence limits under a lognormal distribution.</description><subject>Assessment</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian method</subject><subject>Confidence limits</subject><subject>Dirichlet problem</subject><subject>Electromagnetic interference</subject><subject>Electronic systems</subject><subject>EMP radiation effects</subject><subject>Estimation</subject><subject>intentional electromagnetic interference (IEMI)</subject><subject>multistate system</subject><subject>Probability</subject><subject>Probability density function</subject><subject>Random variables</subject><subject>Reliability theory</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><subject>vulnerability</subject><subject>Wires</subject><issn>0018-9375</issn><issn>1558-187X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpfsbxskQBKrViQXnsrDQZC1d5FNtZ5O9JVcRqNNK5dzQHoVtKFpQS_bAtNvmCEcYWnKY6Y-QMzaiUWUIz9XWOZoTQLNFcyUt0FcJ-WoVkfIbqJX4sRwiu7HARomvL6PoO9xbnfWddDV0FeO1aFwO2vceboYkuCbGMgN_GEKHFH0PTgS93rnFxxMsQIIQWuog_XfzGq2KzukYXtmwC3PzNOXp_Krb5S7J-fV7ly3VSMc1joqxIpWaaaMEol5XcKaWI4qAzIVNLamFTWtdlDVJwLqpUCFJrwiVJU1pByefo_tR78P3PACGafT_4bjppmCKcCka4nih6oirfh-DBmoOf_vajocQcZZqjTHOUaf5kTpm7U8YBwD-vlWKKSf4L_5hvJA</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Liu, Yu</creator><creator>Du, Peibing</creator><creator>Han, Feng</creator><creator>Cai, Libing</creator><creator>Qi, Hongxin</creator><creator>Xia, Hongfu</creator><creator>Wang, Jianguo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4492-3766</orcidid><orcidid>https://orcid.org/0000-0002-9457-9425</orcidid><orcidid>https://orcid.org/0000-0002-7971-7842</orcidid></search><sort><creationdate>20220801</creationdate><title>A Bayesian Estimation of Confidence Limits for Multi-state System Vulnerability Assessment With IEMI</title><author>Liu, Yu ; Du, Peibing ; Han, Feng ; Cai, Libing ; Qi, Hongxin ; Xia, Hongfu ; Wang, Jianguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7f4659290942135c5b777073e98456f0d4f61ddade54334c6440d90350661cea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Assessment</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian method</topic><topic>Confidence limits</topic><topic>Dirichlet problem</topic><topic>Electromagnetic interference</topic><topic>Electronic systems</topic><topic>EMP radiation effects</topic><topic>Estimation</topic><topic>intentional electromagnetic interference (IEMI)</topic><topic>multistate system</topic><topic>Probability</topic><topic>Probability density function</topic><topic>Random variables</topic><topic>Reliability theory</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><topic>vulnerability</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Du, Peibing</creatorcontrib><creatorcontrib>Han, Feng</creatorcontrib><creatorcontrib>Cai, Libing</creatorcontrib><creatorcontrib>Qi, Hongxin</creatorcontrib><creatorcontrib>Xia, Hongfu</creatorcontrib><creatorcontrib>Wang, Jianguo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electromagnetic compatibility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yu</au><au>Du, Peibing</au><au>Han, Feng</au><au>Cai, Libing</au><au>Qi, Hongxin</au><au>Xia, Hongfu</au><au>Wang, Jianguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Estimation of Confidence Limits for Multi-state System Vulnerability Assessment With IEMI</atitle><jtitle>IEEE transactions on electromagnetic compatibility</jtitle><stitle>TEMC</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>64</volume><issue>4</issue><spage>1219</spage><epage>1229</epage><pages>1219-1229</pages><issn>0018-9375</issn><eissn>1558-187X</eissn><coden>IEMCAE</coden><abstract>A Bayesian approach based on the vulnerability distribution is proposed to estimate the confidence limits of the state probability and the threat level of multistate electronic systems interfered by intentional electromagnetic interference (IEMI). The vulnerability distribution is used to describe the state probability function of the multi-state system (MSS) for a given IEMI threat level. When a small number of test samples are under a specific threat level and prior MSS information is known, the posterior estimation of the state probability function can be obtained based on Bayesian theory. Furthermore, to effectively apply the state probability function to assess the vulnerability of the MSS, the uncertainty of the state probability function is discussed. Considering state probabilities under the same threat level as random variables, all these state probabilities also follow the Dirichlet distribution. Thus, the confidence limits of the posteriori state probability and the threat level can be inferred by the marginal distribution of the state probability, which is induced by combining the Dirichlet and vulnerability distributions. Finally, a case study is given to demonstrate the details of the calculation process of the vulnerability distribution, the state probability function, and the confidence limits under a lognormal distribution.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEMC.2022.3169820</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4492-3766</orcidid><orcidid>https://orcid.org/0000-0002-9457-9425</orcidid><orcidid>https://orcid.org/0000-0002-7971-7842</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9375
ispartof IEEE transactions on electromagnetic compatibility, 2022-08, Vol.64 (4), p.1219-1229
issn 0018-9375
1558-187X
language eng
recordid cdi_ieee_primary_9772725
source IEEE Electronic Library (IEL)
subjects Assessment
Bayes methods
Bayesian analysis
Bayesian method
Confidence limits
Dirichlet problem
Electromagnetic interference
Electronic systems
EMP radiation effects
Estimation
intentional electromagnetic interference (IEMI)
multistate system
Probability
Probability density function
Random variables
Reliability theory
Statistical analysis
Uncertainty
vulnerability
Wires
title A Bayesian Estimation of Confidence Limits for Multi-state System Vulnerability Assessment With IEMI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Estimation%20of%20Confidence%20Limits%20for%20Multi-state%20System%20Vulnerability%20Assessment%20With%20IEMI&rft.jtitle=IEEE%20transactions%20on%20electromagnetic%20compatibility&rft.au=Liu,%20Yu&rft.date=2022-08-01&rft.volume=64&rft.issue=4&rft.spage=1219&rft.epage=1229&rft.pages=1219-1229&rft.issn=0018-9375&rft.eissn=1558-187X&rft.coden=IEMCAE&rft_id=info:doi/10.1109/TEMC.2022.3169820&rft_dat=%3Cproquest_RIE%3E2703142039%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703142039&rft_id=info:pmid/&rft_ieee_id=9772725&rfr_iscdi=true