Thermal Conductivity of NI HTS Coil Fabricated by Diffusion Bonding Technique

The no-insulation (NI) winding technique shows superior thermal protection performance when quenching of a high- temperature superconducting (HTS) coil occurs compared to the insulation winding technique. However, the thermal conductivity of an NI HTS coil are not clearly known because the HTS tape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2022-09, Vol.32 (6), p.1-5
Hauptverfasser: Kim, Junil, Ha, Hongsoo, Sohn, Myung-Hwan, Kim, Sung-Kyu, Kim, Gwantae, Lee, Jaehwan, Mun, Jeongmin, Kim, Seokho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 6
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 32
creator Kim, Junil
Ha, Hongsoo
Sohn, Myung-Hwan
Kim, Sung-Kyu
Kim, Gwantae
Lee, Jaehwan
Mun, Jeongmin
Kim, Seokho
description The no-insulation (NI) winding technique shows superior thermal protection performance when quenching of a high- temperature superconducting (HTS) coil occurs compared to the insulation winding technique. However, the thermal conductivity of an NI HTS coil are not clearly known because the HTS tape has various surface conditions such as roughness and oxidation. In this study, the diffusion bonding technique was applied to predict the thermal conductivity of an NI HTS coil, and the core of this technique is to remove the interface between turns by applying Ag diffusion bonding. To investigate the thermal conductivity of an NI HTS coil, an NI HTS coil was fabricated using a diffusion bonding technique, and a stainless-steel 304 block was fabricated to verify the experimental results. The thermal conductivity of the NI coil was measured using a conduction cooling experimental apparatus by applying heat loads to the outside of the coil. The measured thermal conductivity was compared to the values calculated using the thermal resistance circuit at temperatures from 20 K to 77 K.
doi_str_mv 10.1109/TASC.2022.3172917
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9769960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9769960</ieee_id><sourcerecordid>2667010686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1386-53819187f81f986b81c18959bc4a94665d4eaa47ef642a77d3b7c2b795e97323</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NJJuvY12tLVQ9dO8hm01sSrtbs1uh_94tFU8zDM87LzwI3QOZABD9VE5XxYQSSicMJNUgL9AIOFcZ5cAvh51wyBSl7BrddN2GEMhVzkfovVz7tLNbXLRNfXB9_In9EbcBfyzwvFwN57jFM1ul6Gzva1wd8UsM4dDFtsHPQyY2X7j0bt3E74O_RVfBbjt_9zfHqJy9lsU8W36-LYrpMnPAlMg4U6BByaAgaCUqBQ6U5rpyudW5ELzOvbW59EHk1EpZs0o6WknNvZaMsjF6PL_dp3Zo7XqzaQ-pGRoNFUISIEKJgYIz5VLbdckHs09xZ9PRADEnaeYkzZykmT9pQ-bhnIne-39eS6G1IOwXgIxmEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667010686</pqid></control><display><type>article</type><title>Thermal Conductivity of NI HTS Coil Fabricated by Diffusion Bonding Technique</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Junil ; Ha, Hongsoo ; Sohn, Myung-Hwan ; Kim, Sung-Kyu ; Kim, Gwantae ; Lee, Jaehwan ; Mun, Jeongmin ; Kim, Seokho</creator><creatorcontrib>Kim, Junil ; Ha, Hongsoo ; Sohn, Myung-Hwan ; Kim, Sung-Kyu ; Kim, Gwantae ; Lee, Jaehwan ; Mun, Jeongmin ; Kim, Seokho</creatorcontrib><description>The no-insulation (NI) winding technique shows superior thermal protection performance when quenching of a high- temperature superconducting (HTS) coil occurs compared to the insulation winding technique. However, the thermal conductivity of an NI HTS coil are not clearly known because the HTS tape has various surface conditions such as roughness and oxidation. In this study, the diffusion bonding technique was applied to predict the thermal conductivity of an NI HTS coil, and the core of this technique is to remove the interface between turns by applying Ag diffusion bonding. To investigate the thermal conductivity of an NI HTS coil, an NI HTS coil was fabricated using a diffusion bonding technique, and a stainless-steel 304 block was fabricated to verify the experimental results. The thermal conductivity of the NI coil was measured using a conduction cooling experimental apparatus by applying heat loads to the outside of the coil. The measured thermal conductivity was compared to the values calculated using the thermal resistance circuit at temperatures from 20 K to 77 K.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2022.3172917</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bonding ; Circuits ; Coils (windings) ; Conduction cooling ; Conduction heating ; Conductivity ; Diffusion barriers ; Diffusion bonding ; Diffusion welding ; Heat conductivity ; Heat transfer ; high-temperature superconductor ; High-temperature superconductors ; Insulation ; no-insulation coil ; Oxidation ; Quenching ; Stainless steels ; Temperature measurement ; Thermal conductivity ; Thermal energy ; Thermal protection ; Thermal resistance ; Winding ; Windings</subject><ispartof>IEEE transactions on applied superconductivity, 2022-09, Vol.32 (6), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1386-53819187f81f986b81c18959bc4a94665d4eaa47ef642a77d3b7c2b795e97323</citedby><cites>FETCH-LOGICAL-c1386-53819187f81f986b81c18959bc4a94665d4eaa47ef642a77d3b7c2b795e97323</cites><orcidid>0000-0003-4188-2049 ; 0000-0002-1109-9590 ; 0000-0002-5668-1971 ; 0000-0003-3362-1746 ; 0000-0002-0613-9658 ; 0000-0002-6237-3887 ; 0000-0001-9458-207X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9769960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9769960$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Junil</creatorcontrib><creatorcontrib>Ha, Hongsoo</creatorcontrib><creatorcontrib>Sohn, Myung-Hwan</creatorcontrib><creatorcontrib>Kim, Sung-Kyu</creatorcontrib><creatorcontrib>Kim, Gwantae</creatorcontrib><creatorcontrib>Lee, Jaehwan</creatorcontrib><creatorcontrib>Mun, Jeongmin</creatorcontrib><creatorcontrib>Kim, Seokho</creatorcontrib><title>Thermal Conductivity of NI HTS Coil Fabricated by Diffusion Bonding Technique</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The no-insulation (NI) winding technique shows superior thermal protection performance when quenching of a high- temperature superconducting (HTS) coil occurs compared to the insulation winding technique. However, the thermal conductivity of an NI HTS coil are not clearly known because the HTS tape has various surface conditions such as roughness and oxidation. In this study, the diffusion bonding technique was applied to predict the thermal conductivity of an NI HTS coil, and the core of this technique is to remove the interface between turns by applying Ag diffusion bonding. To investigate the thermal conductivity of an NI HTS coil, an NI HTS coil was fabricated using a diffusion bonding technique, and a stainless-steel 304 block was fabricated to verify the experimental results. The thermal conductivity of the NI coil was measured using a conduction cooling experimental apparatus by applying heat loads to the outside of the coil. The measured thermal conductivity was compared to the values calculated using the thermal resistance circuit at temperatures from 20 K to 77 K.</description><subject>Bonding</subject><subject>Circuits</subject><subject>Coils (windings)</subject><subject>Conduction cooling</subject><subject>Conduction heating</subject><subject>Conductivity</subject><subject>Diffusion barriers</subject><subject>Diffusion bonding</subject><subject>Diffusion welding</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>high-temperature superconductor</subject><subject>High-temperature superconductors</subject><subject>Insulation</subject><subject>no-insulation coil</subject><subject>Oxidation</subject><subject>Quenching</subject><subject>Stainless steels</subject><subject>Temperature measurement</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Thermal protection</subject><subject>Thermal resistance</subject><subject>Winding</subject><subject>Windings</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NJJuvY12tLVQ9dO8hm01sSrtbs1uh_94tFU8zDM87LzwI3QOZABD9VE5XxYQSSicMJNUgL9AIOFcZ5cAvh51wyBSl7BrddN2GEMhVzkfovVz7tLNbXLRNfXB9_In9EbcBfyzwvFwN57jFM1ul6Gzva1wd8UsM4dDFtsHPQyY2X7j0bt3E74O_RVfBbjt_9zfHqJy9lsU8W36-LYrpMnPAlMg4U6BByaAgaCUqBQ6U5rpyudW5ELzOvbW59EHk1EpZs0o6WknNvZaMsjF6PL_dp3Zo7XqzaQ-pGRoNFUISIEKJgYIz5VLbdckHs09xZ9PRADEnaeYkzZykmT9pQ-bhnIne-39eS6G1IOwXgIxmEw</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Kim, Junil</creator><creator>Ha, Hongsoo</creator><creator>Sohn, Myung-Hwan</creator><creator>Kim, Sung-Kyu</creator><creator>Kim, Gwantae</creator><creator>Lee, Jaehwan</creator><creator>Mun, Jeongmin</creator><creator>Kim, Seokho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4188-2049</orcidid><orcidid>https://orcid.org/0000-0002-1109-9590</orcidid><orcidid>https://orcid.org/0000-0002-5668-1971</orcidid><orcidid>https://orcid.org/0000-0003-3362-1746</orcidid><orcidid>https://orcid.org/0000-0002-0613-9658</orcidid><orcidid>https://orcid.org/0000-0002-6237-3887</orcidid><orcidid>https://orcid.org/0000-0001-9458-207X</orcidid></search><sort><creationdate>202209</creationdate><title>Thermal Conductivity of NI HTS Coil Fabricated by Diffusion Bonding Technique</title><author>Kim, Junil ; Ha, Hongsoo ; Sohn, Myung-Hwan ; Kim, Sung-Kyu ; Kim, Gwantae ; Lee, Jaehwan ; Mun, Jeongmin ; Kim, Seokho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1386-53819187f81f986b81c18959bc4a94665d4eaa47ef642a77d3b7c2b795e97323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bonding</topic><topic>Circuits</topic><topic>Coils (windings)</topic><topic>Conduction cooling</topic><topic>Conduction heating</topic><topic>Conductivity</topic><topic>Diffusion barriers</topic><topic>Diffusion bonding</topic><topic>Diffusion welding</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>high-temperature superconductor</topic><topic>High-temperature superconductors</topic><topic>Insulation</topic><topic>no-insulation coil</topic><topic>Oxidation</topic><topic>Quenching</topic><topic>Stainless steels</topic><topic>Temperature measurement</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Thermal protection</topic><topic>Thermal resistance</topic><topic>Winding</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Junil</creatorcontrib><creatorcontrib>Ha, Hongsoo</creatorcontrib><creatorcontrib>Sohn, Myung-Hwan</creatorcontrib><creatorcontrib>Kim, Sung-Kyu</creatorcontrib><creatorcontrib>Kim, Gwantae</creatorcontrib><creatorcontrib>Lee, Jaehwan</creatorcontrib><creatorcontrib>Mun, Jeongmin</creatorcontrib><creatorcontrib>Kim, Seokho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Junil</au><au>Ha, Hongsoo</au><au>Sohn, Myung-Hwan</au><au>Kim, Sung-Kyu</au><au>Kim, Gwantae</au><au>Lee, Jaehwan</au><au>Mun, Jeongmin</au><au>Kim, Seokho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Conductivity of NI HTS Coil Fabricated by Diffusion Bonding Technique</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2022-09</date><risdate>2022</risdate><volume>32</volume><issue>6</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The no-insulation (NI) winding technique shows superior thermal protection performance when quenching of a high- temperature superconducting (HTS) coil occurs compared to the insulation winding technique. However, the thermal conductivity of an NI HTS coil are not clearly known because the HTS tape has various surface conditions such as roughness and oxidation. In this study, the diffusion bonding technique was applied to predict the thermal conductivity of an NI HTS coil, and the core of this technique is to remove the interface between turns by applying Ag diffusion bonding. To investigate the thermal conductivity of an NI HTS coil, an NI HTS coil was fabricated using a diffusion bonding technique, and a stainless-steel 304 block was fabricated to verify the experimental results. The thermal conductivity of the NI coil was measured using a conduction cooling experimental apparatus by applying heat loads to the outside of the coil. The measured thermal conductivity was compared to the values calculated using the thermal resistance circuit at temperatures from 20 K to 77 K.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2022.3172917</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4188-2049</orcidid><orcidid>https://orcid.org/0000-0002-1109-9590</orcidid><orcidid>https://orcid.org/0000-0002-5668-1971</orcidid><orcidid>https://orcid.org/0000-0003-3362-1746</orcidid><orcidid>https://orcid.org/0000-0002-0613-9658</orcidid><orcidid>https://orcid.org/0000-0002-6237-3887</orcidid><orcidid>https://orcid.org/0000-0001-9458-207X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2022-09, Vol.32 (6), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_9769960
source IEEE Electronic Library (IEL)
subjects Bonding
Circuits
Coils (windings)
Conduction cooling
Conduction heating
Conductivity
Diffusion barriers
Diffusion bonding
Diffusion welding
Heat conductivity
Heat transfer
high-temperature superconductor
High-temperature superconductors
Insulation
no-insulation coil
Oxidation
Quenching
Stainless steels
Temperature measurement
Thermal conductivity
Thermal energy
Thermal protection
Thermal resistance
Winding
Windings
title Thermal Conductivity of NI HTS Coil Fabricated by Diffusion Bonding Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Conductivity%20of%20NI%20HTS%20Coil%20Fabricated%20by%20Diffusion%20Bonding%20Technique&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Kim,%20Junil&rft.date=2022-09&rft.volume=32&rft.issue=6&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2022.3172917&rft_dat=%3Cproquest_RIE%3E2667010686%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667010686&rft_id=info:pmid/&rft_ieee_id=9769960&rfr_iscdi=true