Thermal Conductivity of NI HTS Coil Fabricated by Diffusion Bonding Technique
The no-insulation (NI) winding technique shows superior thermal protection performance when quenching of a high- temperature superconducting (HTS) coil occurs compared to the insulation winding technique. However, the thermal conductivity of an NI HTS coil are not clearly known because the HTS tape...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2022-09, Vol.32 (6), p.1-5 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 32 |
creator | Kim, Junil Ha, Hongsoo Sohn, Myung-Hwan Kim, Sung-Kyu Kim, Gwantae Lee, Jaehwan Mun, Jeongmin Kim, Seokho |
description | The no-insulation (NI) winding technique shows superior thermal protection performance when quenching of a high- temperature superconducting (HTS) coil occurs compared to the insulation winding technique. However, the thermal conductivity of an NI HTS coil are not clearly known because the HTS tape has various surface conditions such as roughness and oxidation. In this study, the diffusion bonding technique was applied to predict the thermal conductivity of an NI HTS coil, and the core of this technique is to remove the interface between turns by applying Ag diffusion bonding. To investigate the thermal conductivity of an NI HTS coil, an NI HTS coil was fabricated using a diffusion bonding technique, and a stainless-steel 304 block was fabricated to verify the experimental results. The thermal conductivity of the NI coil was measured using a conduction cooling experimental apparatus by applying heat loads to the outside of the coil. The measured thermal conductivity was compared to the values calculated using the thermal resistance circuit at temperatures from 20 K to 77 K. |
doi_str_mv | 10.1109/TASC.2022.3172917 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9769960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9769960</ieee_id><sourcerecordid>2667010686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1386-53819187f81f986b81c18959bc4a94665d4eaa47ef642a77d3b7c2b795e97323</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NJJuvY12tLVQ9dO8hm01sSrtbs1uh_94tFU8zDM87LzwI3QOZABD9VE5XxYQSSicMJNUgL9AIOFcZ5cAvh51wyBSl7BrddN2GEMhVzkfovVz7tLNbXLRNfXB9_In9EbcBfyzwvFwN57jFM1ul6Gzva1wd8UsM4dDFtsHPQyY2X7j0bt3E74O_RVfBbjt_9zfHqJy9lsU8W36-LYrpMnPAlMg4U6BByaAgaCUqBQ6U5rpyudW5ELzOvbW59EHk1EpZs0o6WknNvZaMsjF6PL_dp3Zo7XqzaQ-pGRoNFUISIEKJgYIz5VLbdckHs09xZ9PRADEnaeYkzZykmT9pQ-bhnIne-39eS6G1IOwXgIxmEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667010686</pqid></control><display><type>article</type><title>Thermal Conductivity of NI HTS Coil Fabricated by Diffusion Bonding Technique</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Junil ; Ha, Hongsoo ; Sohn, Myung-Hwan ; Kim, Sung-Kyu ; Kim, Gwantae ; Lee, Jaehwan ; Mun, Jeongmin ; Kim, Seokho</creator><creatorcontrib>Kim, Junil ; Ha, Hongsoo ; Sohn, Myung-Hwan ; Kim, Sung-Kyu ; Kim, Gwantae ; Lee, Jaehwan ; Mun, Jeongmin ; Kim, Seokho</creatorcontrib><description>The no-insulation (NI) winding technique shows superior thermal protection performance when quenching of a high- temperature superconducting (HTS) coil occurs compared to the insulation winding technique. However, the thermal conductivity of an NI HTS coil are not clearly known because the HTS tape has various surface conditions such as roughness and oxidation. In this study, the diffusion bonding technique was applied to predict the thermal conductivity of an NI HTS coil, and the core of this technique is to remove the interface between turns by applying Ag diffusion bonding. To investigate the thermal conductivity of an NI HTS coil, an NI HTS coil was fabricated using a diffusion bonding technique, and a stainless-steel 304 block was fabricated to verify the experimental results. The thermal conductivity of the NI coil was measured using a conduction cooling experimental apparatus by applying heat loads to the outside of the coil. The measured thermal conductivity was compared to the values calculated using the thermal resistance circuit at temperatures from 20 K to 77 K.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2022.3172917</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bonding ; Circuits ; Coils (windings) ; Conduction cooling ; Conduction heating ; Conductivity ; Diffusion barriers ; Diffusion bonding ; Diffusion welding ; Heat conductivity ; Heat transfer ; high-temperature superconductor ; High-temperature superconductors ; Insulation ; no-insulation coil ; Oxidation ; Quenching ; Stainless steels ; Temperature measurement ; Thermal conductivity ; Thermal energy ; Thermal protection ; Thermal resistance ; Winding ; Windings</subject><ispartof>IEEE transactions on applied superconductivity, 2022-09, Vol.32 (6), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1386-53819187f81f986b81c18959bc4a94665d4eaa47ef642a77d3b7c2b795e97323</citedby><cites>FETCH-LOGICAL-c1386-53819187f81f986b81c18959bc4a94665d4eaa47ef642a77d3b7c2b795e97323</cites><orcidid>0000-0003-4188-2049 ; 0000-0002-1109-9590 ; 0000-0002-5668-1971 ; 0000-0003-3362-1746 ; 0000-0002-0613-9658 ; 0000-0002-6237-3887 ; 0000-0001-9458-207X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9769960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9769960$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Junil</creatorcontrib><creatorcontrib>Ha, Hongsoo</creatorcontrib><creatorcontrib>Sohn, Myung-Hwan</creatorcontrib><creatorcontrib>Kim, Sung-Kyu</creatorcontrib><creatorcontrib>Kim, Gwantae</creatorcontrib><creatorcontrib>Lee, Jaehwan</creatorcontrib><creatorcontrib>Mun, Jeongmin</creatorcontrib><creatorcontrib>Kim, Seokho</creatorcontrib><title>Thermal Conductivity of NI HTS Coil Fabricated by Diffusion Bonding Technique</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The no-insulation (NI) winding technique shows superior thermal protection performance when quenching of a high- temperature superconducting (HTS) coil occurs compared to the insulation winding technique. However, the thermal conductivity of an NI HTS coil are not clearly known because the HTS tape has various surface conditions such as roughness and oxidation. In this study, the diffusion bonding technique was applied to predict the thermal conductivity of an NI HTS coil, and the core of this technique is to remove the interface between turns by applying Ag diffusion bonding. To investigate the thermal conductivity of an NI HTS coil, an NI HTS coil was fabricated using a diffusion bonding technique, and a stainless-steel 304 block was fabricated to verify the experimental results. The thermal conductivity of the NI coil was measured using a conduction cooling experimental apparatus by applying heat loads to the outside of the coil. The measured thermal conductivity was compared to the values calculated using the thermal resistance circuit at temperatures from 20 K to 77 K.</description><subject>Bonding</subject><subject>Circuits</subject><subject>Coils (windings)</subject><subject>Conduction cooling</subject><subject>Conduction heating</subject><subject>Conductivity</subject><subject>Diffusion barriers</subject><subject>Diffusion bonding</subject><subject>Diffusion welding</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>high-temperature superconductor</subject><subject>High-temperature superconductors</subject><subject>Insulation</subject><subject>no-insulation coil</subject><subject>Oxidation</subject><subject>Quenching</subject><subject>Stainless steels</subject><subject>Temperature measurement</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Thermal protection</subject><subject>Thermal resistance</subject><subject>Winding</subject><subject>Windings</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NJJuvY12tLVQ9dO8hm01sSrtbs1uh_94tFU8zDM87LzwI3QOZABD9VE5XxYQSSicMJNUgL9AIOFcZ5cAvh51wyBSl7BrddN2GEMhVzkfovVz7tLNbXLRNfXB9_In9EbcBfyzwvFwN57jFM1ul6Gzva1wd8UsM4dDFtsHPQyY2X7j0bt3E74O_RVfBbjt_9zfHqJy9lsU8W36-LYrpMnPAlMg4U6BByaAgaCUqBQ6U5rpyudW5ELzOvbW59EHk1EpZs0o6WknNvZaMsjF6PL_dp3Zo7XqzaQ-pGRoNFUISIEKJgYIz5VLbdckHs09xZ9PRADEnaeYkzZykmT9pQ-bhnIne-39eS6G1IOwXgIxmEw</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Kim, Junil</creator><creator>Ha, Hongsoo</creator><creator>Sohn, Myung-Hwan</creator><creator>Kim, Sung-Kyu</creator><creator>Kim, Gwantae</creator><creator>Lee, Jaehwan</creator><creator>Mun, Jeongmin</creator><creator>Kim, Seokho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4188-2049</orcidid><orcidid>https://orcid.org/0000-0002-1109-9590</orcidid><orcidid>https://orcid.org/0000-0002-5668-1971</orcidid><orcidid>https://orcid.org/0000-0003-3362-1746</orcidid><orcidid>https://orcid.org/0000-0002-0613-9658</orcidid><orcidid>https://orcid.org/0000-0002-6237-3887</orcidid><orcidid>https://orcid.org/0000-0001-9458-207X</orcidid></search><sort><creationdate>202209</creationdate><title>Thermal Conductivity of NI HTS Coil Fabricated by Diffusion Bonding Technique</title><author>Kim, Junil ; Ha, Hongsoo ; Sohn, Myung-Hwan ; Kim, Sung-Kyu ; Kim, Gwantae ; Lee, Jaehwan ; Mun, Jeongmin ; Kim, Seokho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1386-53819187f81f986b81c18959bc4a94665d4eaa47ef642a77d3b7c2b795e97323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bonding</topic><topic>Circuits</topic><topic>Coils (windings)</topic><topic>Conduction cooling</topic><topic>Conduction heating</topic><topic>Conductivity</topic><topic>Diffusion barriers</topic><topic>Diffusion bonding</topic><topic>Diffusion welding</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>high-temperature superconductor</topic><topic>High-temperature superconductors</topic><topic>Insulation</topic><topic>no-insulation coil</topic><topic>Oxidation</topic><topic>Quenching</topic><topic>Stainless steels</topic><topic>Temperature measurement</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Thermal protection</topic><topic>Thermal resistance</topic><topic>Winding</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Junil</creatorcontrib><creatorcontrib>Ha, Hongsoo</creatorcontrib><creatorcontrib>Sohn, Myung-Hwan</creatorcontrib><creatorcontrib>Kim, Sung-Kyu</creatorcontrib><creatorcontrib>Kim, Gwantae</creatorcontrib><creatorcontrib>Lee, Jaehwan</creatorcontrib><creatorcontrib>Mun, Jeongmin</creatorcontrib><creatorcontrib>Kim, Seokho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Junil</au><au>Ha, Hongsoo</au><au>Sohn, Myung-Hwan</au><au>Kim, Sung-Kyu</au><au>Kim, Gwantae</au><au>Lee, Jaehwan</au><au>Mun, Jeongmin</au><au>Kim, Seokho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Conductivity of NI HTS Coil Fabricated by Diffusion Bonding Technique</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2022-09</date><risdate>2022</risdate><volume>32</volume><issue>6</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The no-insulation (NI) winding technique shows superior thermal protection performance when quenching of a high- temperature superconducting (HTS) coil occurs compared to the insulation winding technique. However, the thermal conductivity of an NI HTS coil are not clearly known because the HTS tape has various surface conditions such as roughness and oxidation. In this study, the diffusion bonding technique was applied to predict the thermal conductivity of an NI HTS coil, and the core of this technique is to remove the interface between turns by applying Ag diffusion bonding. To investigate the thermal conductivity of an NI HTS coil, an NI HTS coil was fabricated using a diffusion bonding technique, and a stainless-steel 304 block was fabricated to verify the experimental results. The thermal conductivity of the NI coil was measured using a conduction cooling experimental apparatus by applying heat loads to the outside of the coil. The measured thermal conductivity was compared to the values calculated using the thermal resistance circuit at temperatures from 20 K to 77 K.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2022.3172917</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4188-2049</orcidid><orcidid>https://orcid.org/0000-0002-1109-9590</orcidid><orcidid>https://orcid.org/0000-0002-5668-1971</orcidid><orcidid>https://orcid.org/0000-0003-3362-1746</orcidid><orcidid>https://orcid.org/0000-0002-0613-9658</orcidid><orcidid>https://orcid.org/0000-0002-6237-3887</orcidid><orcidid>https://orcid.org/0000-0001-9458-207X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2022-09, Vol.32 (6), p.1-5 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_9769960 |
source | IEEE Electronic Library (IEL) |
subjects | Bonding Circuits Coils (windings) Conduction cooling Conduction heating Conductivity Diffusion barriers Diffusion bonding Diffusion welding Heat conductivity Heat transfer high-temperature superconductor High-temperature superconductors Insulation no-insulation coil Oxidation Quenching Stainless steels Temperature measurement Thermal conductivity Thermal energy Thermal protection Thermal resistance Winding Windings |
title | Thermal Conductivity of NI HTS Coil Fabricated by Diffusion Bonding Technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Conductivity%20of%20NI%20HTS%20Coil%20Fabricated%20by%20Diffusion%20Bonding%20Technique&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Kim,%20Junil&rft.date=2022-09&rft.volume=32&rft.issue=6&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2022.3172917&rft_dat=%3Cproquest_RIE%3E2667010686%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667010686&rft_id=info:pmid/&rft_ieee_id=9769960&rfr_iscdi=true |