Optical Uplink, D2D and IoT Links Based on VCSEL Array: Analysis and Demonstration

In this paper, vertical cavity surface emitting laser (VCSEL) array is used to establish gigabits/second (Gbps) optical uplink, device-to-device (D2D), and Internet-of-thing (IoT) links, as a supplementary for visible light communication (VLC) and ultra-low latency near-field communication in a typi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2022-08, Vol.40 (15), p.5083-5096
Hauptverfasser: Wei, Zixian, Zhang, Yuan, Mao, Simei, Liu, Zhongxu, Zang, Zihan, Yu, Changyuan, Dong, Yuhan, Fu, H.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5096
container_issue 15
container_start_page 5083
container_title Journal of lightwave technology
container_volume 40
creator Wei, Zixian
Zhang, Yuan
Mao, Simei
Liu, Zhongxu
Zang, Zihan
Yu, Changyuan
Dong, Yuhan
Fu, H.Y.
description In this paper, vertical cavity surface emitting laser (VCSEL) array is used to establish gigabits/second (Gbps) optical uplink, device-to-device (D2D), and Internet-of-thing (IoT) links, as a supplementary for visible light communication (VLC) and ultra-low latency near-field communication in a typical indoor scenario. The mathematical model based on a modified Monte-Carlo ray-tracing (MMCR) algorithm for VCSEL-based optical wireless communication (OWC) is presented, which takes into account both accuracy and time complexity for the calculation of the channel characteristics including power distribution, impulse response, error analysis, and signal-to-noise ratio (SNR). Simulation firstly takes a global approach to the optical uplink lens design method, compared between Lambertian and Gaussian sources, and then extended six typical line-of-sight (LOS) or non-line-of-sight (NLOS) VCSEL-based OWC models. For demonstration, we adopted a 940-nm VCSEL array and 850-nm single-pixel VCSEL to establish LOS and NLOS systems after measuring the optics-electronics and bandwidth characteristics, respectively. Furthermore, multiple multi-carrier schemes are adopted to improve the OWC performance system based on a 940-nm VCSEL array including uniform-loading orthogonal frequency division multiplexing (OFDM), channel-coded OFDM, bit-loading/ power-allocation OFDM, and OFDM access (OFDMA). Results show that OFDM can effectively decrease the inter-symbol interference (ISI) of the indoor channel and increase the data rate, and the bit/ power-loading method achieves the highest 7.2 Gbps transmission with the bit error rate (BER) within the forward error correction (FEC). All the theoretical and experimental results, for the first time, provide a comprehensive design and optimizing process of VCSEL-based indoor high-capacity OWC systems for future optical uplink, D2D, and IoT applications.
doi_str_mv 10.1109/JLT.2022.3172921
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9769887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9769887</ieee_id><sourcerecordid>2695153443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-8bbd0113ce130a118daa1ebdd45527bfdc909cd54f484626eb397d190ed999a93</originalsourceid><addsrcrecordid>eNo9kEFLwzAYhoMoOKd3wUvAq535krRJvM1u6qQw0M1rSJsUOru2Jt1h_97ODU8ffDzvy8uD0C2QCQBRj-_ZakIJpRMGgioKZ2gEcSwjSoGdoxERjEVSUH6JrkLYEAKcSzFCH8uurwpT43VXV833A57RGTaNxYt2hbPhE_CzCc7itsFf6ec8w1Pvzf4JTxtT70MV_uCZ27ZN6L3pq7a5RhelqYO7Od0xWr_MV-lblC1fF-k0i4phUx_JPLcEgBUOGDEA0hoDLreWxzEVeWkLRVRhY15yyROauJwpYUERZ5VSRrExuj_2dr792bnQ602788OsoGmiYogZ52ygyJEqfBuCd6XufLU1fq-B6IM5PZjTB3P6ZG6I3B0jlXPuH1ciUVIK9gviwWeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695153443</pqid></control><display><type>article</type><title>Optical Uplink, D2D and IoT Links Based on VCSEL Array: Analysis and Demonstration</title><source>IEEE Electronic Library (IEL)</source><creator>Wei, Zixian ; Zhang, Yuan ; Mao, Simei ; Liu, Zhongxu ; Zang, Zihan ; Yu, Changyuan ; Dong, Yuhan ; Fu, H.Y.</creator><creatorcontrib>Wei, Zixian ; Zhang, Yuan ; Mao, Simei ; Liu, Zhongxu ; Zang, Zihan ; Yu, Changyuan ; Dong, Yuhan ; Fu, H.Y.</creatorcontrib><description>In this paper, vertical cavity surface emitting laser (VCSEL) array is used to establish gigabits/second (Gbps) optical uplink, device-to-device (D2D), and Internet-of-thing (IoT) links, as a supplementary for visible light communication (VLC) and ultra-low latency near-field communication in a typical indoor scenario. The mathematical model based on a modified Monte-Carlo ray-tracing (MMCR) algorithm for VCSEL-based optical wireless communication (OWC) is presented, which takes into account both accuracy and time complexity for the calculation of the channel characteristics including power distribution, impulse response, error analysis, and signal-to-noise ratio (SNR). Simulation firstly takes a global approach to the optical uplink lens design method, compared between Lambertian and Gaussian sources, and then extended six typical line-of-sight (LOS) or non-line-of-sight (NLOS) VCSEL-based OWC models. For demonstration, we adopted a 940-nm VCSEL array and 850-nm single-pixel VCSEL to establish LOS and NLOS systems after measuring the optics-electronics and bandwidth characteristics, respectively. Furthermore, multiple multi-carrier schemes are adopted to improve the OWC performance system based on a 940-nm VCSEL array including uniform-loading orthogonal frequency division multiplexing (OFDM), channel-coded OFDM, bit-loading/ power-allocation OFDM, and OFDM access (OFDMA). Results show that OFDM can effectively decrease the inter-symbol interference (ISI) of the indoor channel and increase the data rate, and the bit/ power-loading method achieves the highest 7.2 Gbps transmission with the bit error rate (BER) within the forward error correction (FEC). All the theoretical and experimental results, for the first time, provide a comprehensive design and optimizing process of VCSEL-based indoor high-capacity OWC systems for future optical uplink, D2D, and IoT applications.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2022.3172921</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bit error rate ; Communication ; Design optimization ; Device-to-device communication ; Electric power distribution ; Error analysis ; Error correction ; Gbps D2D and IoT links ; GBPS optical uplink ; Impulse response ; Internet of Things ; Laser arrays ; Lens design ; Line of sight ; Mathematical models ; monte-carlo ray-tracing ; Near field communication ; Network latency ; OFDM ; Optical communication ; Optical design ; Optical receivers ; Optical transmitters ; Orthogonal Frequency Division Multiplexing ; Ray tracing ; Signal to noise ratio ; Uplink ; Uplinking ; VCSEL array ; Vertical cavity surface emission lasers ; Vertical cavity surface emitting lasers ; Wireless communications</subject><ispartof>Journal of lightwave technology, 2022-08, Vol.40 (15), p.5083-5096</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-8bbd0113ce130a118daa1ebdd45527bfdc909cd54f484626eb397d190ed999a93</citedby><cites>FETCH-LOGICAL-c221t-8bbd0113ce130a118daa1ebdd45527bfdc909cd54f484626eb397d190ed999a93</cites><orcidid>0000-0001-6360-124X ; 0000-0001-5275-1787 ; 0000-0002-3185-0441 ; 0000-0002-6026-4863 ; 0000-0002-4276-0011 ; 0000-0002-5015-9330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9769887$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9769887$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei, Zixian</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Mao, Simei</creatorcontrib><creatorcontrib>Liu, Zhongxu</creatorcontrib><creatorcontrib>Zang, Zihan</creatorcontrib><creatorcontrib>Yu, Changyuan</creatorcontrib><creatorcontrib>Dong, Yuhan</creatorcontrib><creatorcontrib>Fu, H.Y.</creatorcontrib><title>Optical Uplink, D2D and IoT Links Based on VCSEL Array: Analysis and Demonstration</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In this paper, vertical cavity surface emitting laser (VCSEL) array is used to establish gigabits/second (Gbps) optical uplink, device-to-device (D2D), and Internet-of-thing (IoT) links, as a supplementary for visible light communication (VLC) and ultra-low latency near-field communication in a typical indoor scenario. The mathematical model based on a modified Monte-Carlo ray-tracing (MMCR) algorithm for VCSEL-based optical wireless communication (OWC) is presented, which takes into account both accuracy and time complexity for the calculation of the channel characteristics including power distribution, impulse response, error analysis, and signal-to-noise ratio (SNR). Simulation firstly takes a global approach to the optical uplink lens design method, compared between Lambertian and Gaussian sources, and then extended six typical line-of-sight (LOS) or non-line-of-sight (NLOS) VCSEL-based OWC models. For demonstration, we adopted a 940-nm VCSEL array and 850-nm single-pixel VCSEL to establish LOS and NLOS systems after measuring the optics-electronics and bandwidth characteristics, respectively. Furthermore, multiple multi-carrier schemes are adopted to improve the OWC performance system based on a 940-nm VCSEL array including uniform-loading orthogonal frequency division multiplexing (OFDM), channel-coded OFDM, bit-loading/ power-allocation OFDM, and OFDM access (OFDMA). Results show that OFDM can effectively decrease the inter-symbol interference (ISI) of the indoor channel and increase the data rate, and the bit/ power-loading method achieves the highest 7.2 Gbps transmission with the bit error rate (BER) within the forward error correction (FEC). All the theoretical and experimental results, for the first time, provide a comprehensive design and optimizing process of VCSEL-based indoor high-capacity OWC systems for future optical uplink, D2D, and IoT applications.</description><subject>Algorithms</subject><subject>Bit error rate</subject><subject>Communication</subject><subject>Design optimization</subject><subject>Device-to-device communication</subject><subject>Electric power distribution</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Gbps D2D and IoT links</subject><subject>GBPS optical uplink</subject><subject>Impulse response</subject><subject>Internet of Things</subject><subject>Laser arrays</subject><subject>Lens design</subject><subject>Line of sight</subject><subject>Mathematical models</subject><subject>monte-carlo ray-tracing</subject><subject>Near field communication</subject><subject>Network latency</subject><subject>OFDM</subject><subject>Optical communication</subject><subject>Optical design</subject><subject>Optical receivers</subject><subject>Optical transmitters</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Ray tracing</subject><subject>Signal to noise ratio</subject><subject>Uplink</subject><subject>Uplinking</subject><subject>VCSEL array</subject><subject>Vertical cavity surface emission lasers</subject><subject>Vertical cavity surface emitting lasers</subject><subject>Wireless communications</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLwzAYhoMoOKd3wUvAq535krRJvM1u6qQw0M1rSJsUOru2Jt1h_97ODU8ffDzvy8uD0C2QCQBRj-_ZakIJpRMGgioKZ2gEcSwjSoGdoxERjEVSUH6JrkLYEAKcSzFCH8uurwpT43VXV833A57RGTaNxYt2hbPhE_CzCc7itsFf6ec8w1Pvzf4JTxtT70MV_uCZ27ZN6L3pq7a5RhelqYO7Od0xWr_MV-lblC1fF-k0i4phUx_JPLcEgBUOGDEA0hoDLreWxzEVeWkLRVRhY15yyROauJwpYUERZ5VSRrExuj_2dr792bnQ602788OsoGmiYogZ52ygyJEqfBuCd6XufLU1fq-B6IM5PZjTB3P6ZG6I3B0jlXPuH1ciUVIK9gviwWeY</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Wei, Zixian</creator><creator>Zhang, Yuan</creator><creator>Mao, Simei</creator><creator>Liu, Zhongxu</creator><creator>Zang, Zihan</creator><creator>Yu, Changyuan</creator><creator>Dong, Yuhan</creator><creator>Fu, H.Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6360-124X</orcidid><orcidid>https://orcid.org/0000-0001-5275-1787</orcidid><orcidid>https://orcid.org/0000-0002-3185-0441</orcidid><orcidid>https://orcid.org/0000-0002-6026-4863</orcidid><orcidid>https://orcid.org/0000-0002-4276-0011</orcidid><orcidid>https://orcid.org/0000-0002-5015-9330</orcidid></search><sort><creationdate>20220801</creationdate><title>Optical Uplink, D2D and IoT Links Based on VCSEL Array: Analysis and Demonstration</title><author>Wei, Zixian ; Zhang, Yuan ; Mao, Simei ; Liu, Zhongxu ; Zang, Zihan ; Yu, Changyuan ; Dong, Yuhan ; Fu, H.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-8bbd0113ce130a118daa1ebdd45527bfdc909cd54f484626eb397d190ed999a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bit error rate</topic><topic>Communication</topic><topic>Design optimization</topic><topic>Device-to-device communication</topic><topic>Electric power distribution</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Gbps D2D and IoT links</topic><topic>GBPS optical uplink</topic><topic>Impulse response</topic><topic>Internet of Things</topic><topic>Laser arrays</topic><topic>Lens design</topic><topic>Line of sight</topic><topic>Mathematical models</topic><topic>monte-carlo ray-tracing</topic><topic>Near field communication</topic><topic>Network latency</topic><topic>OFDM</topic><topic>Optical communication</topic><topic>Optical design</topic><topic>Optical receivers</topic><topic>Optical transmitters</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Ray tracing</topic><topic>Signal to noise ratio</topic><topic>Uplink</topic><topic>Uplinking</topic><topic>VCSEL array</topic><topic>Vertical cavity surface emission lasers</topic><topic>Vertical cavity surface emitting lasers</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Zixian</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Mao, Simei</creatorcontrib><creatorcontrib>Liu, Zhongxu</creatorcontrib><creatorcontrib>Zang, Zihan</creatorcontrib><creatorcontrib>Yu, Changyuan</creatorcontrib><creatorcontrib>Dong, Yuhan</creatorcontrib><creatorcontrib>Fu, H.Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei, Zixian</au><au>Zhang, Yuan</au><au>Mao, Simei</au><au>Liu, Zhongxu</au><au>Zang, Zihan</au><au>Yu, Changyuan</au><au>Dong, Yuhan</au><au>Fu, H.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Uplink, D2D and IoT Links Based on VCSEL Array: Analysis and Demonstration</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>40</volume><issue>15</issue><spage>5083</spage><epage>5096</epage><pages>5083-5096</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In this paper, vertical cavity surface emitting laser (VCSEL) array is used to establish gigabits/second (Gbps) optical uplink, device-to-device (D2D), and Internet-of-thing (IoT) links, as a supplementary for visible light communication (VLC) and ultra-low latency near-field communication in a typical indoor scenario. The mathematical model based on a modified Monte-Carlo ray-tracing (MMCR) algorithm for VCSEL-based optical wireless communication (OWC) is presented, which takes into account both accuracy and time complexity for the calculation of the channel characteristics including power distribution, impulse response, error analysis, and signal-to-noise ratio (SNR). Simulation firstly takes a global approach to the optical uplink lens design method, compared between Lambertian and Gaussian sources, and then extended six typical line-of-sight (LOS) or non-line-of-sight (NLOS) VCSEL-based OWC models. For demonstration, we adopted a 940-nm VCSEL array and 850-nm single-pixel VCSEL to establish LOS and NLOS systems after measuring the optics-electronics and bandwidth characteristics, respectively. Furthermore, multiple multi-carrier schemes are adopted to improve the OWC performance system based on a 940-nm VCSEL array including uniform-loading orthogonal frequency division multiplexing (OFDM), channel-coded OFDM, bit-loading/ power-allocation OFDM, and OFDM access (OFDMA). Results show that OFDM can effectively decrease the inter-symbol interference (ISI) of the indoor channel and increase the data rate, and the bit/ power-loading method achieves the highest 7.2 Gbps transmission with the bit error rate (BER) within the forward error correction (FEC). All the theoretical and experimental results, for the first time, provide a comprehensive design and optimizing process of VCSEL-based indoor high-capacity OWC systems for future optical uplink, D2D, and IoT applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2022.3172921</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6360-124X</orcidid><orcidid>https://orcid.org/0000-0001-5275-1787</orcidid><orcidid>https://orcid.org/0000-0002-3185-0441</orcidid><orcidid>https://orcid.org/0000-0002-6026-4863</orcidid><orcidid>https://orcid.org/0000-0002-4276-0011</orcidid><orcidid>https://orcid.org/0000-0002-5015-9330</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2022-08, Vol.40 (15), p.5083-5096
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_9769887
source IEEE Electronic Library (IEL)
subjects Algorithms
Bit error rate
Communication
Design optimization
Device-to-device communication
Electric power distribution
Error analysis
Error correction
Gbps D2D and IoT links
GBPS optical uplink
Impulse response
Internet of Things
Laser arrays
Lens design
Line of sight
Mathematical models
monte-carlo ray-tracing
Near field communication
Network latency
OFDM
Optical communication
Optical design
Optical receivers
Optical transmitters
Orthogonal Frequency Division Multiplexing
Ray tracing
Signal to noise ratio
Uplink
Uplinking
VCSEL array
Vertical cavity surface emission lasers
Vertical cavity surface emitting lasers
Wireless communications
title Optical Uplink, D2D and IoT Links Based on VCSEL Array: Analysis and Demonstration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A17%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Uplink,%20D2D%20and%20IoT%20Links%20Based%20on%20VCSEL%20Array:%20Analysis%20and%20Demonstration&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Wei,%20Zixian&rft.date=2022-08-01&rft.volume=40&rft.issue=15&rft.spage=5083&rft.epage=5096&rft.pages=5083-5096&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2022.3172921&rft_dat=%3Cproquest_RIE%3E2695153443%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695153443&rft_id=info:pmid/&rft_ieee_id=9769887&rfr_iscdi=true