Optical Uplink, D2D and IoT Links Based on VCSEL Array: Analysis and Demonstration
In this paper, vertical cavity surface emitting laser (VCSEL) array is used to establish gigabits/second (Gbps) optical uplink, device-to-device (D2D), and Internet-of-thing (IoT) links, as a supplementary for visible light communication (VLC) and ultra-low latency near-field communication in a typi...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2022-08, Vol.40 (15), p.5083-5096 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5096 |
---|---|
container_issue | 15 |
container_start_page | 5083 |
container_title | Journal of lightwave technology |
container_volume | 40 |
creator | Wei, Zixian Zhang, Yuan Mao, Simei Liu, Zhongxu Zang, Zihan Yu, Changyuan Dong, Yuhan Fu, H.Y. |
description | In this paper, vertical cavity surface emitting laser (VCSEL) array is used to establish gigabits/second (Gbps) optical uplink, device-to-device (D2D), and Internet-of-thing (IoT) links, as a supplementary for visible light communication (VLC) and ultra-low latency near-field communication in a typical indoor scenario. The mathematical model based on a modified Monte-Carlo ray-tracing (MMCR) algorithm for VCSEL-based optical wireless communication (OWC) is presented, which takes into account both accuracy and time complexity for the calculation of the channel characteristics including power distribution, impulse response, error analysis, and signal-to-noise ratio (SNR). Simulation firstly takes a global approach to the optical uplink lens design method, compared between Lambertian and Gaussian sources, and then extended six typical line-of-sight (LOS) or non-line-of-sight (NLOS) VCSEL-based OWC models. For demonstration, we adopted a 940-nm VCSEL array and 850-nm single-pixel VCSEL to establish LOS and NLOS systems after measuring the optics-electronics and bandwidth characteristics, respectively. Furthermore, multiple multi-carrier schemes are adopted to improve the OWC performance system based on a 940-nm VCSEL array including uniform-loading orthogonal frequency division multiplexing (OFDM), channel-coded OFDM, bit-loading/ power-allocation OFDM, and OFDM access (OFDMA). Results show that OFDM can effectively decrease the inter-symbol interference (ISI) of the indoor channel and increase the data rate, and the bit/ power-loading method achieves the highest 7.2 Gbps transmission with the bit error rate (BER) within the forward error correction (FEC). All the theoretical and experimental results, for the first time, provide a comprehensive design and optimizing process of VCSEL-based indoor high-capacity OWC systems for future optical uplink, D2D, and IoT applications. |
doi_str_mv | 10.1109/JLT.2022.3172921 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9769887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9769887</ieee_id><sourcerecordid>2695153443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-8bbd0113ce130a118daa1ebdd45527bfdc909cd54f484626eb397d190ed999a93</originalsourceid><addsrcrecordid>eNo9kEFLwzAYhoMoOKd3wUvAq535krRJvM1u6qQw0M1rSJsUOru2Jt1h_97ODU8ffDzvy8uD0C2QCQBRj-_ZakIJpRMGgioKZ2gEcSwjSoGdoxERjEVSUH6JrkLYEAKcSzFCH8uurwpT43VXV833A57RGTaNxYt2hbPhE_CzCc7itsFf6ec8w1Pvzf4JTxtT70MV_uCZ27ZN6L3pq7a5RhelqYO7Od0xWr_MV-lblC1fF-k0i4phUx_JPLcEgBUOGDEA0hoDLreWxzEVeWkLRVRhY15yyROauJwpYUERZ5VSRrExuj_2dr792bnQ602788OsoGmiYogZ52ygyJEqfBuCd6XufLU1fq-B6IM5PZjTB3P6ZG6I3B0jlXPuH1ciUVIK9gviwWeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695153443</pqid></control><display><type>article</type><title>Optical Uplink, D2D and IoT Links Based on VCSEL Array: Analysis and Demonstration</title><source>IEEE Electronic Library (IEL)</source><creator>Wei, Zixian ; Zhang, Yuan ; Mao, Simei ; Liu, Zhongxu ; Zang, Zihan ; Yu, Changyuan ; Dong, Yuhan ; Fu, H.Y.</creator><creatorcontrib>Wei, Zixian ; Zhang, Yuan ; Mao, Simei ; Liu, Zhongxu ; Zang, Zihan ; Yu, Changyuan ; Dong, Yuhan ; Fu, H.Y.</creatorcontrib><description>In this paper, vertical cavity surface emitting laser (VCSEL) array is used to establish gigabits/second (Gbps) optical uplink, device-to-device (D2D), and Internet-of-thing (IoT) links, as a supplementary for visible light communication (VLC) and ultra-low latency near-field communication in a typical indoor scenario. The mathematical model based on a modified Monte-Carlo ray-tracing (MMCR) algorithm for VCSEL-based optical wireless communication (OWC) is presented, which takes into account both accuracy and time complexity for the calculation of the channel characteristics including power distribution, impulse response, error analysis, and signal-to-noise ratio (SNR). Simulation firstly takes a global approach to the optical uplink lens design method, compared between Lambertian and Gaussian sources, and then extended six typical line-of-sight (LOS) or non-line-of-sight (NLOS) VCSEL-based OWC models. For demonstration, we adopted a 940-nm VCSEL array and 850-nm single-pixel VCSEL to establish LOS and NLOS systems after measuring the optics-electronics and bandwidth characteristics, respectively. Furthermore, multiple multi-carrier schemes are adopted to improve the OWC performance system based on a 940-nm VCSEL array including uniform-loading orthogonal frequency division multiplexing (OFDM), channel-coded OFDM, bit-loading/ power-allocation OFDM, and OFDM access (OFDMA). Results show that OFDM can effectively decrease the inter-symbol interference (ISI) of the indoor channel and increase the data rate, and the bit/ power-loading method achieves the highest 7.2 Gbps transmission with the bit error rate (BER) within the forward error correction (FEC). All the theoretical and experimental results, for the first time, provide a comprehensive design and optimizing process of VCSEL-based indoor high-capacity OWC systems for future optical uplink, D2D, and IoT applications.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2022.3172921</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bit error rate ; Communication ; Design optimization ; Device-to-device communication ; Electric power distribution ; Error analysis ; Error correction ; Gbps D2D and IoT links ; GBPS optical uplink ; Impulse response ; Internet of Things ; Laser arrays ; Lens design ; Line of sight ; Mathematical models ; monte-carlo ray-tracing ; Near field communication ; Network latency ; OFDM ; Optical communication ; Optical design ; Optical receivers ; Optical transmitters ; Orthogonal Frequency Division Multiplexing ; Ray tracing ; Signal to noise ratio ; Uplink ; Uplinking ; VCSEL array ; Vertical cavity surface emission lasers ; Vertical cavity surface emitting lasers ; Wireless communications</subject><ispartof>Journal of lightwave technology, 2022-08, Vol.40 (15), p.5083-5096</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-8bbd0113ce130a118daa1ebdd45527bfdc909cd54f484626eb397d190ed999a93</citedby><cites>FETCH-LOGICAL-c221t-8bbd0113ce130a118daa1ebdd45527bfdc909cd54f484626eb397d190ed999a93</cites><orcidid>0000-0001-6360-124X ; 0000-0001-5275-1787 ; 0000-0002-3185-0441 ; 0000-0002-6026-4863 ; 0000-0002-4276-0011 ; 0000-0002-5015-9330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9769887$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9769887$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei, Zixian</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Mao, Simei</creatorcontrib><creatorcontrib>Liu, Zhongxu</creatorcontrib><creatorcontrib>Zang, Zihan</creatorcontrib><creatorcontrib>Yu, Changyuan</creatorcontrib><creatorcontrib>Dong, Yuhan</creatorcontrib><creatorcontrib>Fu, H.Y.</creatorcontrib><title>Optical Uplink, D2D and IoT Links Based on VCSEL Array: Analysis and Demonstration</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In this paper, vertical cavity surface emitting laser (VCSEL) array is used to establish gigabits/second (Gbps) optical uplink, device-to-device (D2D), and Internet-of-thing (IoT) links, as a supplementary for visible light communication (VLC) and ultra-low latency near-field communication in a typical indoor scenario. The mathematical model based on a modified Monte-Carlo ray-tracing (MMCR) algorithm for VCSEL-based optical wireless communication (OWC) is presented, which takes into account both accuracy and time complexity for the calculation of the channel characteristics including power distribution, impulse response, error analysis, and signal-to-noise ratio (SNR). Simulation firstly takes a global approach to the optical uplink lens design method, compared between Lambertian and Gaussian sources, and then extended six typical line-of-sight (LOS) or non-line-of-sight (NLOS) VCSEL-based OWC models. For demonstration, we adopted a 940-nm VCSEL array and 850-nm single-pixel VCSEL to establish LOS and NLOS systems after measuring the optics-electronics and bandwidth characteristics, respectively. Furthermore, multiple multi-carrier schemes are adopted to improve the OWC performance system based on a 940-nm VCSEL array including uniform-loading orthogonal frequency division multiplexing (OFDM), channel-coded OFDM, bit-loading/ power-allocation OFDM, and OFDM access (OFDMA). Results show that OFDM can effectively decrease the inter-symbol interference (ISI) of the indoor channel and increase the data rate, and the bit/ power-loading method achieves the highest 7.2 Gbps transmission with the bit error rate (BER) within the forward error correction (FEC). All the theoretical and experimental results, for the first time, provide a comprehensive design and optimizing process of VCSEL-based indoor high-capacity OWC systems for future optical uplink, D2D, and IoT applications.</description><subject>Algorithms</subject><subject>Bit error rate</subject><subject>Communication</subject><subject>Design optimization</subject><subject>Device-to-device communication</subject><subject>Electric power distribution</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Gbps D2D and IoT links</subject><subject>GBPS optical uplink</subject><subject>Impulse response</subject><subject>Internet of Things</subject><subject>Laser arrays</subject><subject>Lens design</subject><subject>Line of sight</subject><subject>Mathematical models</subject><subject>monte-carlo ray-tracing</subject><subject>Near field communication</subject><subject>Network latency</subject><subject>OFDM</subject><subject>Optical communication</subject><subject>Optical design</subject><subject>Optical receivers</subject><subject>Optical transmitters</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Ray tracing</subject><subject>Signal to noise ratio</subject><subject>Uplink</subject><subject>Uplinking</subject><subject>VCSEL array</subject><subject>Vertical cavity surface emission lasers</subject><subject>Vertical cavity surface emitting lasers</subject><subject>Wireless communications</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLwzAYhoMoOKd3wUvAq535krRJvM1u6qQw0M1rSJsUOru2Jt1h_97ODU8ffDzvy8uD0C2QCQBRj-_ZakIJpRMGgioKZ2gEcSwjSoGdoxERjEVSUH6JrkLYEAKcSzFCH8uurwpT43VXV833A57RGTaNxYt2hbPhE_CzCc7itsFf6ec8w1Pvzf4JTxtT70MV_uCZ27ZN6L3pq7a5RhelqYO7Od0xWr_MV-lblC1fF-k0i4phUx_JPLcEgBUOGDEA0hoDLreWxzEVeWkLRVRhY15yyROauJwpYUERZ5VSRrExuj_2dr792bnQ602788OsoGmiYogZ52ygyJEqfBuCd6XufLU1fq-B6IM5PZjTB3P6ZG6I3B0jlXPuH1ciUVIK9gviwWeY</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Wei, Zixian</creator><creator>Zhang, Yuan</creator><creator>Mao, Simei</creator><creator>Liu, Zhongxu</creator><creator>Zang, Zihan</creator><creator>Yu, Changyuan</creator><creator>Dong, Yuhan</creator><creator>Fu, H.Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6360-124X</orcidid><orcidid>https://orcid.org/0000-0001-5275-1787</orcidid><orcidid>https://orcid.org/0000-0002-3185-0441</orcidid><orcidid>https://orcid.org/0000-0002-6026-4863</orcidid><orcidid>https://orcid.org/0000-0002-4276-0011</orcidid><orcidid>https://orcid.org/0000-0002-5015-9330</orcidid></search><sort><creationdate>20220801</creationdate><title>Optical Uplink, D2D and IoT Links Based on VCSEL Array: Analysis and Demonstration</title><author>Wei, Zixian ; Zhang, Yuan ; Mao, Simei ; Liu, Zhongxu ; Zang, Zihan ; Yu, Changyuan ; Dong, Yuhan ; Fu, H.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-8bbd0113ce130a118daa1ebdd45527bfdc909cd54f484626eb397d190ed999a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bit error rate</topic><topic>Communication</topic><topic>Design optimization</topic><topic>Device-to-device communication</topic><topic>Electric power distribution</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Gbps D2D and IoT links</topic><topic>GBPS optical uplink</topic><topic>Impulse response</topic><topic>Internet of Things</topic><topic>Laser arrays</topic><topic>Lens design</topic><topic>Line of sight</topic><topic>Mathematical models</topic><topic>monte-carlo ray-tracing</topic><topic>Near field communication</topic><topic>Network latency</topic><topic>OFDM</topic><topic>Optical communication</topic><topic>Optical design</topic><topic>Optical receivers</topic><topic>Optical transmitters</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Ray tracing</topic><topic>Signal to noise ratio</topic><topic>Uplink</topic><topic>Uplinking</topic><topic>VCSEL array</topic><topic>Vertical cavity surface emission lasers</topic><topic>Vertical cavity surface emitting lasers</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Zixian</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Mao, Simei</creatorcontrib><creatorcontrib>Liu, Zhongxu</creatorcontrib><creatorcontrib>Zang, Zihan</creatorcontrib><creatorcontrib>Yu, Changyuan</creatorcontrib><creatorcontrib>Dong, Yuhan</creatorcontrib><creatorcontrib>Fu, H.Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei, Zixian</au><au>Zhang, Yuan</au><au>Mao, Simei</au><au>Liu, Zhongxu</au><au>Zang, Zihan</au><au>Yu, Changyuan</au><au>Dong, Yuhan</au><au>Fu, H.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Uplink, D2D and IoT Links Based on VCSEL Array: Analysis and Demonstration</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>40</volume><issue>15</issue><spage>5083</spage><epage>5096</epage><pages>5083-5096</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In this paper, vertical cavity surface emitting laser (VCSEL) array is used to establish gigabits/second (Gbps) optical uplink, device-to-device (D2D), and Internet-of-thing (IoT) links, as a supplementary for visible light communication (VLC) and ultra-low latency near-field communication in a typical indoor scenario. The mathematical model based on a modified Monte-Carlo ray-tracing (MMCR) algorithm for VCSEL-based optical wireless communication (OWC) is presented, which takes into account both accuracy and time complexity for the calculation of the channel characteristics including power distribution, impulse response, error analysis, and signal-to-noise ratio (SNR). Simulation firstly takes a global approach to the optical uplink lens design method, compared between Lambertian and Gaussian sources, and then extended six typical line-of-sight (LOS) or non-line-of-sight (NLOS) VCSEL-based OWC models. For demonstration, we adopted a 940-nm VCSEL array and 850-nm single-pixel VCSEL to establish LOS and NLOS systems after measuring the optics-electronics and bandwidth characteristics, respectively. Furthermore, multiple multi-carrier schemes are adopted to improve the OWC performance system based on a 940-nm VCSEL array including uniform-loading orthogonal frequency division multiplexing (OFDM), channel-coded OFDM, bit-loading/ power-allocation OFDM, and OFDM access (OFDMA). Results show that OFDM can effectively decrease the inter-symbol interference (ISI) of the indoor channel and increase the data rate, and the bit/ power-loading method achieves the highest 7.2 Gbps transmission with the bit error rate (BER) within the forward error correction (FEC). All the theoretical and experimental results, for the first time, provide a comprehensive design and optimizing process of VCSEL-based indoor high-capacity OWC systems for future optical uplink, D2D, and IoT applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2022.3172921</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6360-124X</orcidid><orcidid>https://orcid.org/0000-0001-5275-1787</orcidid><orcidid>https://orcid.org/0000-0002-3185-0441</orcidid><orcidid>https://orcid.org/0000-0002-6026-4863</orcidid><orcidid>https://orcid.org/0000-0002-4276-0011</orcidid><orcidid>https://orcid.org/0000-0002-5015-9330</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2022-08, Vol.40 (15), p.5083-5096 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_ieee_primary_9769887 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bit error rate Communication Design optimization Device-to-device communication Electric power distribution Error analysis Error correction Gbps D2D and IoT links GBPS optical uplink Impulse response Internet of Things Laser arrays Lens design Line of sight Mathematical models monte-carlo ray-tracing Near field communication Network latency OFDM Optical communication Optical design Optical receivers Optical transmitters Orthogonal Frequency Division Multiplexing Ray tracing Signal to noise ratio Uplink Uplinking VCSEL array Vertical cavity surface emission lasers Vertical cavity surface emitting lasers Wireless communications |
title | Optical Uplink, D2D and IoT Links Based on VCSEL Array: Analysis and Demonstration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A17%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Uplink,%20D2D%20and%20IoT%20Links%20Based%20on%20VCSEL%20Array:%20Analysis%20and%20Demonstration&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Wei,%20Zixian&rft.date=2022-08-01&rft.volume=40&rft.issue=15&rft.spage=5083&rft.epage=5096&rft.pages=5083-5096&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2022.3172921&rft_dat=%3Cproquest_RIE%3E2695153443%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695153443&rft_id=info:pmid/&rft_ieee_id=9769887&rfr_iscdi=true |