Generating Unified Platforms Using Multigranularity Domain DSE (MG-DmDSE) Exploiting Application Similarities

Heterogeneous accelerator-rich (ACC-rich) platforms combining general-purpose cores and specialized HW accelerators (ACCs) promise high-performance and low-power streaming application deployments in a variety of domains, such as video analytics and software-defined radio. In order to benefit a domai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2023-01, Vol.42 (1), p.280-293
Hauptverfasser: Zhang, Jinghan, Sultan, Aly, Zandigohar, Mehrshad, Schirner, Gunar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 293
container_issue 1
container_start_page 280
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 42
creator Zhang, Jinghan
Sultan, Aly
Zandigohar, Mehrshad
Schirner, Gunar
description Heterogeneous accelerator-rich (ACC-rich) platforms combining general-purpose cores and specialized HW accelerators (ACCs) promise high-performance and low-power streaming application deployments in a variety of domains, such as video analytics and software-defined radio. In order to benefit a domain of applications, a domain platform exploration tool must take advantage of structural and functional similarities across applications by allocating a common set of ACCs. A previous approach proposed a genetic domain exploration tool (GIDE) that applied a restrictive binding algorithm that mapped applications functions to monolithic accelerators. This approach suffered from a low average application throughput across and reduced platform generality. This article introduces a multigranularity-based domain design space exploration tool (MG-DmDSE) to improve both average application throughput as well as platform generality. The key contributions of MG-DmDSE are: 1) applying a multigranular decomposition of coarse-grained application functions into more granular compute kernels; 2) examining compute similarity between functions in order to provide more generic functions; 3) configuring monolithic ACCs by selectively bypassing compute elements within them during DSE to expose more functionality; and 4) speeding up MG-DmDSE platform allocation exploration through a greedy guided mutation (GGM) algorithm. To assess MG-DmDSE, both GIDE and MG-DmDSE were applied to applications in the OpenVX library. MG-DmDSE achieves an average 2.84\times greater application throughput compared to GIDE. Additionally, 87.5% of applications benefited from running on the platform produced by MG-DmDSE versus 50% from GIDE, which indicated increased platform generality. The generated MG-DmDSE platforms achieve an average of 61.8% logarithmic throughput improvement for unknown applications over GIDE. GGM results in saving 84.8% of the exploration time in MG-DmDSE with only 0.23% performance loss.
doi_str_mv 10.1109/TCAD.2022.3172373
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9766410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9766410</ieee_id><sourcerecordid>2756561795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b2b04b19a2d251986ca695d8c2e0bae9f6dc58a3e7313472c7074ba37ba30fd73</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeKMXnTlJ0yyXY51T2FDYdh3SNh0Z_TJpwf172214cTiHw_sBD0KPQCYARL5t57N4QgmlEwaCMsGu0AgkE0EIHK7RiFAxDQgR5BbdeX8gBEJO5QiVS1MZp1tb7fGusrk1Gf4udJvXrvR454f_uitau3e66grtbHvEcV1qW-F4s8Av62UQl_31ihe_TVHbU9KsaQqb9ql1hTe2tCefNf4e3eS68Obhssdo977Yzj-C1dfycz5bBSmVrA0SmpAwAalpRjnIaZTqSPJsmlJDEm1kHmUpn2pmBAMWCpoKIsJEM9EPyTPBxuj5nNu4-qczvlWHunNVX6mo4BGPQEjeq-CsSl3tvTO5apwttTsqIGqgqgaqaqCqLlR7z9PZY40x_3opoigEwv4AKcdzfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756561795</pqid></control><display><type>article</type><title>Generating Unified Platforms Using Multigranularity Domain DSE (MG-DmDSE) Exploiting Application Similarities</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jinghan ; Sultan, Aly ; Zandigohar, Mehrshad ; Schirner, Gunar</creator><creatorcontrib>Zhang, Jinghan ; Sultan, Aly ; Zandigohar, Mehrshad ; Schirner, Gunar</creatorcontrib><description>Heterogeneous accelerator-rich (ACC-rich) platforms combining general-purpose cores and specialized HW accelerators (ACCs) promise high-performance and low-power streaming application deployments in a variety of domains, such as video analytics and software-defined radio. In order to benefit a domain of applications, a domain platform exploration tool must take advantage of structural and functional similarities across applications by allocating a common set of ACCs. A previous approach proposed a genetic domain exploration tool (GIDE) that applied a restrictive binding algorithm that mapped applications functions to monolithic accelerators. This approach suffered from a low average application throughput across and reduced platform generality. This article introduces a multigranularity-based domain design space exploration tool (MG-DmDSE) to improve both average application throughput as well as platform generality. The key contributions of MG-DmDSE are: 1) applying a multigranular decomposition of coarse-grained application functions into more granular compute kernels; 2) examining compute similarity between functions in order to provide more generic functions; 3) configuring monolithic ACCs by selectively bypassing compute elements within them during DSE to expose more functionality; and 4) speeding up MG-DmDSE platform allocation exploration through a greedy guided mutation (GGM) algorithm. To assess MG-DmDSE, both GIDE and MG-DmDSE were applied to applications in the OpenVX library. MG-DmDSE achieves an average &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;2.84\times &lt;/tex-math&gt;&lt;/inline-formula&gt; greater application throughput compared to GIDE. Additionally, 87.5% of applications benefited from running on the platform produced by MG-DmDSE versus 50% from GIDE, which indicated increased platform generality. The generated MG-DmDSE platforms achieve an average of 61.8% logarithmic throughput improvement for unknown applications over GIDE. GGM results in saving 84.8% of the exploration time in MG-DmDSE with only 0.23% performance loss.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2022.3172373</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerator-rich (ACC-rich) platform ; Accelerators ; Convolution ; design space exploration ; domain platform allocation ; Domains ; Fabrics ; Focusing ; function decomposition ; Greedy algorithms ; Kernel ; Mutation ; Platforms ; Resource management ; Similarity ; Software radio ; Space exploration ; streaming application similarities ; Throughput</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2023-01, Vol.42 (1), p.280-293</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b2b04b19a2d251986ca695d8c2e0bae9f6dc58a3e7313472c7074ba37ba30fd73</citedby><cites>FETCH-LOGICAL-c293t-b2b04b19a2d251986ca695d8c2e0bae9f6dc58a3e7313472c7074ba37ba30fd73</cites><orcidid>0000-0003-2583-395X ; 0000-0002-3336-3110 ; 0000-0002-5408-8496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9766410$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9766410$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Jinghan</creatorcontrib><creatorcontrib>Sultan, Aly</creatorcontrib><creatorcontrib>Zandigohar, Mehrshad</creatorcontrib><creatorcontrib>Schirner, Gunar</creatorcontrib><title>Generating Unified Platforms Using Multigranularity Domain DSE (MG-DmDSE) Exploiting Application Similarities</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Heterogeneous accelerator-rich (ACC-rich) platforms combining general-purpose cores and specialized HW accelerators (ACCs) promise high-performance and low-power streaming application deployments in a variety of domains, such as video analytics and software-defined radio. In order to benefit a domain of applications, a domain platform exploration tool must take advantage of structural and functional similarities across applications by allocating a common set of ACCs. A previous approach proposed a genetic domain exploration tool (GIDE) that applied a restrictive binding algorithm that mapped applications functions to monolithic accelerators. This approach suffered from a low average application throughput across and reduced platform generality. This article introduces a multigranularity-based domain design space exploration tool (MG-DmDSE) to improve both average application throughput as well as platform generality. The key contributions of MG-DmDSE are: 1) applying a multigranular decomposition of coarse-grained application functions into more granular compute kernels; 2) examining compute similarity between functions in order to provide more generic functions; 3) configuring monolithic ACCs by selectively bypassing compute elements within them during DSE to expose more functionality; and 4) speeding up MG-DmDSE platform allocation exploration through a greedy guided mutation (GGM) algorithm. To assess MG-DmDSE, both GIDE and MG-DmDSE were applied to applications in the OpenVX library. MG-DmDSE achieves an average &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;2.84\times &lt;/tex-math&gt;&lt;/inline-formula&gt; greater application throughput compared to GIDE. Additionally, 87.5% of applications benefited from running on the platform produced by MG-DmDSE versus 50% from GIDE, which indicated increased platform generality. The generated MG-DmDSE platforms achieve an average of 61.8% logarithmic throughput improvement for unknown applications over GIDE. GGM results in saving 84.8% of the exploration time in MG-DmDSE with only 0.23% performance loss.</description><subject>Accelerator-rich (ACC-rich) platform</subject><subject>Accelerators</subject><subject>Convolution</subject><subject>design space exploration</subject><subject>domain platform allocation</subject><subject>Domains</subject><subject>Fabrics</subject><subject>Focusing</subject><subject>function decomposition</subject><subject>Greedy algorithms</subject><subject>Kernel</subject><subject>Mutation</subject><subject>Platforms</subject><subject>Resource management</subject><subject>Similarity</subject><subject>Software radio</subject><subject>Space exploration</subject><subject>streaming application similarities</subject><subject>Throughput</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeKMXnTlJ0yyXY51T2FDYdh3SNh0Z_TJpwf172214cTiHw_sBD0KPQCYARL5t57N4QgmlEwaCMsGu0AgkE0EIHK7RiFAxDQgR5BbdeX8gBEJO5QiVS1MZp1tb7fGusrk1Gf4udJvXrvR454f_uitau3e66grtbHvEcV1qW-F4s8Av62UQl_31ihe_TVHbU9KsaQqb9ql1hTe2tCefNf4e3eS68Obhssdo977Yzj-C1dfycz5bBSmVrA0SmpAwAalpRjnIaZTqSPJsmlJDEm1kHmUpn2pmBAMWCpoKIsJEM9EPyTPBxuj5nNu4-qczvlWHunNVX6mo4BGPQEjeq-CsSl3tvTO5apwttTsqIGqgqgaqaqCqLlR7z9PZY40x_3opoigEwv4AKcdzfA</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Zhang, Jinghan</creator><creator>Sultan, Aly</creator><creator>Zandigohar, Mehrshad</creator><creator>Schirner, Gunar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2583-395X</orcidid><orcidid>https://orcid.org/0000-0002-3336-3110</orcidid><orcidid>https://orcid.org/0000-0002-5408-8496</orcidid></search><sort><creationdate>202301</creationdate><title>Generating Unified Platforms Using Multigranularity Domain DSE (MG-DmDSE) Exploiting Application Similarities</title><author>Zhang, Jinghan ; Sultan, Aly ; Zandigohar, Mehrshad ; Schirner, Gunar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b2b04b19a2d251986ca695d8c2e0bae9f6dc58a3e7313472c7074ba37ba30fd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerator-rich (ACC-rich) platform</topic><topic>Accelerators</topic><topic>Convolution</topic><topic>design space exploration</topic><topic>domain platform allocation</topic><topic>Domains</topic><topic>Fabrics</topic><topic>Focusing</topic><topic>function decomposition</topic><topic>Greedy algorithms</topic><topic>Kernel</topic><topic>Mutation</topic><topic>Platforms</topic><topic>Resource management</topic><topic>Similarity</topic><topic>Software radio</topic><topic>Space exploration</topic><topic>streaming application similarities</topic><topic>Throughput</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jinghan</creatorcontrib><creatorcontrib>Sultan, Aly</creatorcontrib><creatorcontrib>Zandigohar, Mehrshad</creatorcontrib><creatorcontrib>Schirner, Gunar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jinghan</au><au>Sultan, Aly</au><au>Zandigohar, Mehrshad</au><au>Schirner, Gunar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating Unified Platforms Using Multigranularity Domain DSE (MG-DmDSE) Exploiting Application Similarities</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2023-01</date><risdate>2023</risdate><volume>42</volume><issue>1</issue><spage>280</spage><epage>293</epage><pages>280-293</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Heterogeneous accelerator-rich (ACC-rich) platforms combining general-purpose cores and specialized HW accelerators (ACCs) promise high-performance and low-power streaming application deployments in a variety of domains, such as video analytics and software-defined radio. In order to benefit a domain of applications, a domain platform exploration tool must take advantage of structural and functional similarities across applications by allocating a common set of ACCs. A previous approach proposed a genetic domain exploration tool (GIDE) that applied a restrictive binding algorithm that mapped applications functions to monolithic accelerators. This approach suffered from a low average application throughput across and reduced platform generality. This article introduces a multigranularity-based domain design space exploration tool (MG-DmDSE) to improve both average application throughput as well as platform generality. The key contributions of MG-DmDSE are: 1) applying a multigranular decomposition of coarse-grained application functions into more granular compute kernels; 2) examining compute similarity between functions in order to provide more generic functions; 3) configuring monolithic ACCs by selectively bypassing compute elements within them during DSE to expose more functionality; and 4) speeding up MG-DmDSE platform allocation exploration through a greedy guided mutation (GGM) algorithm. To assess MG-DmDSE, both GIDE and MG-DmDSE were applied to applications in the OpenVX library. MG-DmDSE achieves an average &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;2.84\times &lt;/tex-math&gt;&lt;/inline-formula&gt; greater application throughput compared to GIDE. Additionally, 87.5% of applications benefited from running on the platform produced by MG-DmDSE versus 50% from GIDE, which indicated increased platform generality. The generated MG-DmDSE platforms achieve an average of 61.8% logarithmic throughput improvement for unknown applications over GIDE. GGM results in saving 84.8% of the exploration time in MG-DmDSE with only 0.23% performance loss.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2022.3172373</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2583-395X</orcidid><orcidid>https://orcid.org/0000-0002-3336-3110</orcidid><orcidid>https://orcid.org/0000-0002-5408-8496</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2023-01, Vol.42 (1), p.280-293
issn 0278-0070
1937-4151
language eng
recordid cdi_ieee_primary_9766410
source IEEE Electronic Library (IEL)
subjects Accelerator-rich (ACC-rich) platform
Accelerators
Convolution
design space exploration
domain platform allocation
Domains
Fabrics
Focusing
function decomposition
Greedy algorithms
Kernel
Mutation
Platforms
Resource management
Similarity
Software radio
Space exploration
streaming application similarities
Throughput
title Generating Unified Platforms Using Multigranularity Domain DSE (MG-DmDSE) Exploiting Application Similarities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20Unified%20Platforms%20Using%20Multigranularity%20Domain%20DSE%20(MG-DmDSE)%20Exploiting%20Application%20Similarities&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Zhang,%20Jinghan&rft.date=2023-01&rft.volume=42&rft.issue=1&rft.spage=280&rft.epage=293&rft.pages=280-293&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2022.3172373&rft_dat=%3Cproquest_RIE%3E2756561795%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756561795&rft_id=info:pmid/&rft_ieee_id=9766410&rfr_iscdi=true