Generating Unified Platforms Using Multigranularity Domain DSE (MG-DmDSE) Exploiting Application Similarities
Heterogeneous accelerator-rich (ACC-rich) platforms combining general-purpose cores and specialized HW accelerators (ACCs) promise high-performance and low-power streaming application deployments in a variety of domains, such as video analytics and software-defined radio. In order to benefit a domai...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2023-01, Vol.42 (1), p.280-293 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 293 |
---|---|
container_issue | 1 |
container_start_page | 280 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 42 |
creator | Zhang, Jinghan Sultan, Aly Zandigohar, Mehrshad Schirner, Gunar |
description | Heterogeneous accelerator-rich (ACC-rich) platforms combining general-purpose cores and specialized HW accelerators (ACCs) promise high-performance and low-power streaming application deployments in a variety of domains, such as video analytics and software-defined radio. In order to benefit a domain of applications, a domain platform exploration tool must take advantage of structural and functional similarities across applications by allocating a common set of ACCs. A previous approach proposed a genetic domain exploration tool (GIDE) that applied a restrictive binding algorithm that mapped applications functions to monolithic accelerators. This approach suffered from a low average application throughput across and reduced platform generality. This article introduces a multigranularity-based domain design space exploration tool (MG-DmDSE) to improve both average application throughput as well as platform generality. The key contributions of MG-DmDSE are: 1) applying a multigranular decomposition of coarse-grained application functions into more granular compute kernels; 2) examining compute similarity between functions in order to provide more generic functions; 3) configuring monolithic ACCs by selectively bypassing compute elements within them during DSE to expose more functionality; and 4) speeding up MG-DmDSE platform allocation exploration through a greedy guided mutation (GGM) algorithm. To assess MG-DmDSE, both GIDE and MG-DmDSE were applied to applications in the OpenVX library. MG-DmDSE achieves an average 2.84\times greater application throughput compared to GIDE. Additionally, 87.5% of applications benefited from running on the platform produced by MG-DmDSE versus 50% from GIDE, which indicated increased platform generality. The generated MG-DmDSE platforms achieve an average of 61.8% logarithmic throughput improvement for unknown applications over GIDE. GGM results in saving 84.8% of the exploration time in MG-DmDSE with only 0.23% performance loss. |
doi_str_mv | 10.1109/TCAD.2022.3172373 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9766410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9766410</ieee_id><sourcerecordid>2756561795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b2b04b19a2d251986ca695d8c2e0bae9f6dc58a3e7313472c7074ba37ba30fd73</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeKMXnTlJ0yyXY51T2FDYdh3SNh0Z_TJpwf172214cTiHw_sBD0KPQCYARL5t57N4QgmlEwaCMsGu0AgkE0EIHK7RiFAxDQgR5BbdeX8gBEJO5QiVS1MZp1tb7fGusrk1Gf4udJvXrvR454f_uitau3e66grtbHvEcV1qW-F4s8Av62UQl_31ihe_TVHbU9KsaQqb9ql1hTe2tCefNf4e3eS68Obhssdo977Yzj-C1dfycz5bBSmVrA0SmpAwAalpRjnIaZTqSPJsmlJDEm1kHmUpn2pmBAMWCpoKIsJEM9EPyTPBxuj5nNu4-qczvlWHunNVX6mo4BGPQEjeq-CsSl3tvTO5apwttTsqIGqgqgaqaqCqLlR7z9PZY40x_3opoigEwv4AKcdzfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756561795</pqid></control><display><type>article</type><title>Generating Unified Platforms Using Multigranularity Domain DSE (MG-DmDSE) Exploiting Application Similarities</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jinghan ; Sultan, Aly ; Zandigohar, Mehrshad ; Schirner, Gunar</creator><creatorcontrib>Zhang, Jinghan ; Sultan, Aly ; Zandigohar, Mehrshad ; Schirner, Gunar</creatorcontrib><description>Heterogeneous accelerator-rich (ACC-rich) platforms combining general-purpose cores and specialized HW accelerators (ACCs) promise high-performance and low-power streaming application deployments in a variety of domains, such as video analytics and software-defined radio. In order to benefit a domain of applications, a domain platform exploration tool must take advantage of structural and functional similarities across applications by allocating a common set of ACCs. A previous approach proposed a genetic domain exploration tool (GIDE) that applied a restrictive binding algorithm that mapped applications functions to monolithic accelerators. This approach suffered from a low average application throughput across and reduced platform generality. This article introduces a multigranularity-based domain design space exploration tool (MG-DmDSE) to improve both average application throughput as well as platform generality. The key contributions of MG-DmDSE are: 1) applying a multigranular decomposition of coarse-grained application functions into more granular compute kernels; 2) examining compute similarity between functions in order to provide more generic functions; 3) configuring monolithic ACCs by selectively bypassing compute elements within them during DSE to expose more functionality; and 4) speeding up MG-DmDSE platform allocation exploration through a greedy guided mutation (GGM) algorithm. To assess MG-DmDSE, both GIDE and MG-DmDSE were applied to applications in the OpenVX library. MG-DmDSE achieves an average <inline-formula> <tex-math notation="LaTeX">2.84\times </tex-math></inline-formula> greater application throughput compared to GIDE. Additionally, 87.5% of applications benefited from running on the platform produced by MG-DmDSE versus 50% from GIDE, which indicated increased platform generality. The generated MG-DmDSE platforms achieve an average of 61.8% logarithmic throughput improvement for unknown applications over GIDE. GGM results in saving 84.8% of the exploration time in MG-DmDSE with only 0.23% performance loss.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2022.3172373</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerator-rich (ACC-rich) platform ; Accelerators ; Convolution ; design space exploration ; domain platform allocation ; Domains ; Fabrics ; Focusing ; function decomposition ; Greedy algorithms ; Kernel ; Mutation ; Platforms ; Resource management ; Similarity ; Software radio ; Space exploration ; streaming application similarities ; Throughput</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2023-01, Vol.42 (1), p.280-293</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b2b04b19a2d251986ca695d8c2e0bae9f6dc58a3e7313472c7074ba37ba30fd73</citedby><cites>FETCH-LOGICAL-c293t-b2b04b19a2d251986ca695d8c2e0bae9f6dc58a3e7313472c7074ba37ba30fd73</cites><orcidid>0000-0003-2583-395X ; 0000-0002-3336-3110 ; 0000-0002-5408-8496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9766410$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9766410$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Jinghan</creatorcontrib><creatorcontrib>Sultan, Aly</creatorcontrib><creatorcontrib>Zandigohar, Mehrshad</creatorcontrib><creatorcontrib>Schirner, Gunar</creatorcontrib><title>Generating Unified Platforms Using Multigranularity Domain DSE (MG-DmDSE) Exploiting Application Similarities</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Heterogeneous accelerator-rich (ACC-rich) platforms combining general-purpose cores and specialized HW accelerators (ACCs) promise high-performance and low-power streaming application deployments in a variety of domains, such as video analytics and software-defined radio. In order to benefit a domain of applications, a domain platform exploration tool must take advantage of structural and functional similarities across applications by allocating a common set of ACCs. A previous approach proposed a genetic domain exploration tool (GIDE) that applied a restrictive binding algorithm that mapped applications functions to monolithic accelerators. This approach suffered from a low average application throughput across and reduced platform generality. This article introduces a multigranularity-based domain design space exploration tool (MG-DmDSE) to improve both average application throughput as well as platform generality. The key contributions of MG-DmDSE are: 1) applying a multigranular decomposition of coarse-grained application functions into more granular compute kernels; 2) examining compute similarity between functions in order to provide more generic functions; 3) configuring monolithic ACCs by selectively bypassing compute elements within them during DSE to expose more functionality; and 4) speeding up MG-DmDSE platform allocation exploration through a greedy guided mutation (GGM) algorithm. To assess MG-DmDSE, both GIDE and MG-DmDSE were applied to applications in the OpenVX library. MG-DmDSE achieves an average <inline-formula> <tex-math notation="LaTeX">2.84\times </tex-math></inline-formula> greater application throughput compared to GIDE. Additionally, 87.5% of applications benefited from running on the platform produced by MG-DmDSE versus 50% from GIDE, which indicated increased platform generality. The generated MG-DmDSE platforms achieve an average of 61.8% logarithmic throughput improvement for unknown applications over GIDE. GGM results in saving 84.8% of the exploration time in MG-DmDSE with only 0.23% performance loss.</description><subject>Accelerator-rich (ACC-rich) platform</subject><subject>Accelerators</subject><subject>Convolution</subject><subject>design space exploration</subject><subject>domain platform allocation</subject><subject>Domains</subject><subject>Fabrics</subject><subject>Focusing</subject><subject>function decomposition</subject><subject>Greedy algorithms</subject><subject>Kernel</subject><subject>Mutation</subject><subject>Platforms</subject><subject>Resource management</subject><subject>Similarity</subject><subject>Software radio</subject><subject>Space exploration</subject><subject>streaming application similarities</subject><subject>Throughput</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeKMXnTlJ0yyXY51T2FDYdh3SNh0Z_TJpwf172214cTiHw_sBD0KPQCYARL5t57N4QgmlEwaCMsGu0AgkE0EIHK7RiFAxDQgR5BbdeX8gBEJO5QiVS1MZp1tb7fGusrk1Gf4udJvXrvR454f_uitau3e66grtbHvEcV1qW-F4s8Av62UQl_31ihe_TVHbU9KsaQqb9ql1hTe2tCefNf4e3eS68Obhssdo977Yzj-C1dfycz5bBSmVrA0SmpAwAalpRjnIaZTqSPJsmlJDEm1kHmUpn2pmBAMWCpoKIsJEM9EPyTPBxuj5nNu4-qczvlWHunNVX6mo4BGPQEjeq-CsSl3tvTO5apwttTsqIGqgqgaqaqCqLlR7z9PZY40x_3opoigEwv4AKcdzfA</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Zhang, Jinghan</creator><creator>Sultan, Aly</creator><creator>Zandigohar, Mehrshad</creator><creator>Schirner, Gunar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2583-395X</orcidid><orcidid>https://orcid.org/0000-0002-3336-3110</orcidid><orcidid>https://orcid.org/0000-0002-5408-8496</orcidid></search><sort><creationdate>202301</creationdate><title>Generating Unified Platforms Using Multigranularity Domain DSE (MG-DmDSE) Exploiting Application Similarities</title><author>Zhang, Jinghan ; Sultan, Aly ; Zandigohar, Mehrshad ; Schirner, Gunar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b2b04b19a2d251986ca695d8c2e0bae9f6dc58a3e7313472c7074ba37ba30fd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerator-rich (ACC-rich) platform</topic><topic>Accelerators</topic><topic>Convolution</topic><topic>design space exploration</topic><topic>domain platform allocation</topic><topic>Domains</topic><topic>Fabrics</topic><topic>Focusing</topic><topic>function decomposition</topic><topic>Greedy algorithms</topic><topic>Kernel</topic><topic>Mutation</topic><topic>Platforms</topic><topic>Resource management</topic><topic>Similarity</topic><topic>Software radio</topic><topic>Space exploration</topic><topic>streaming application similarities</topic><topic>Throughput</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jinghan</creatorcontrib><creatorcontrib>Sultan, Aly</creatorcontrib><creatorcontrib>Zandigohar, Mehrshad</creatorcontrib><creatorcontrib>Schirner, Gunar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jinghan</au><au>Sultan, Aly</au><au>Zandigohar, Mehrshad</au><au>Schirner, Gunar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating Unified Platforms Using Multigranularity Domain DSE (MG-DmDSE) Exploiting Application Similarities</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2023-01</date><risdate>2023</risdate><volume>42</volume><issue>1</issue><spage>280</spage><epage>293</epage><pages>280-293</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Heterogeneous accelerator-rich (ACC-rich) platforms combining general-purpose cores and specialized HW accelerators (ACCs) promise high-performance and low-power streaming application deployments in a variety of domains, such as video analytics and software-defined radio. In order to benefit a domain of applications, a domain platform exploration tool must take advantage of structural and functional similarities across applications by allocating a common set of ACCs. A previous approach proposed a genetic domain exploration tool (GIDE) that applied a restrictive binding algorithm that mapped applications functions to monolithic accelerators. This approach suffered from a low average application throughput across and reduced platform generality. This article introduces a multigranularity-based domain design space exploration tool (MG-DmDSE) to improve both average application throughput as well as platform generality. The key contributions of MG-DmDSE are: 1) applying a multigranular decomposition of coarse-grained application functions into more granular compute kernels; 2) examining compute similarity between functions in order to provide more generic functions; 3) configuring monolithic ACCs by selectively bypassing compute elements within them during DSE to expose more functionality; and 4) speeding up MG-DmDSE platform allocation exploration through a greedy guided mutation (GGM) algorithm. To assess MG-DmDSE, both GIDE and MG-DmDSE were applied to applications in the OpenVX library. MG-DmDSE achieves an average <inline-formula> <tex-math notation="LaTeX">2.84\times </tex-math></inline-formula> greater application throughput compared to GIDE. Additionally, 87.5% of applications benefited from running on the platform produced by MG-DmDSE versus 50% from GIDE, which indicated increased platform generality. The generated MG-DmDSE platforms achieve an average of 61.8% logarithmic throughput improvement for unknown applications over GIDE. GGM results in saving 84.8% of the exploration time in MG-DmDSE with only 0.23% performance loss.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2022.3172373</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2583-395X</orcidid><orcidid>https://orcid.org/0000-0002-3336-3110</orcidid><orcidid>https://orcid.org/0000-0002-5408-8496</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2023-01, Vol.42 (1), p.280-293 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_ieee_primary_9766410 |
source | IEEE Electronic Library (IEL) |
subjects | Accelerator-rich (ACC-rich) platform Accelerators Convolution design space exploration domain platform allocation Domains Fabrics Focusing function decomposition Greedy algorithms Kernel Mutation Platforms Resource management Similarity Software radio Space exploration streaming application similarities Throughput |
title | Generating Unified Platforms Using Multigranularity Domain DSE (MG-DmDSE) Exploiting Application Similarities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20Unified%20Platforms%20Using%20Multigranularity%20Domain%20DSE%20(MG-DmDSE)%20Exploiting%20Application%20Similarities&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Zhang,%20Jinghan&rft.date=2023-01&rft.volume=42&rft.issue=1&rft.spage=280&rft.epage=293&rft.pages=280-293&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2022.3172373&rft_dat=%3Cproquest_RIE%3E2756561795%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756561795&rft_id=info:pmid/&rft_ieee_id=9766410&rfr_iscdi=true |