Research on Purging and Ventilation Progress of Positive-Pressure Explosion-Proof Motor
In order to solve the problems of time-consuming, high-cost and poor safety in the purging and ventilation progress test of positive pressure explosion-proof motor, the multi-component fluid theory is introduced to analyze the positive-pressure explosion-proof motor. According to the basic explosion...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.48964-48972 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48972 |
---|---|
container_issue | |
container_start_page | 48964 |
container_title | IEEE access |
container_volume | 10 |
creator | Liu, Wenhui Ai, Mengmeng Xu, Lishen Gou, Han |
description | In order to solve the problems of time-consuming, high-cost and poor safety in the purging and ventilation progress test of positive pressure explosion-proof motor, the multi-component fluid theory is introduced to analyze the positive-pressure explosion-proof motor. According to the basic explosion-proof principle and key problems of purging and ventilation progress simulation of positive-pressure explosion-proof motor, the explosion-proof finite element model of the motor is established, and the purging and ventilation progress of the motor is simulated and analyzed by multi-component fluid theory. By controlling the concentration of He (helium), the explosive environment and the purging process of the motor can be achieved, and it can be known whether there is a purging dead angle in the motor by observing the transient concentration of each component, which enhances the safety performance of the motor. Then the accuracy of the simulation is verified by experiments. Finally, based on the observation of the fluid components in the original motor, an optimization scheme of changing the intake pipe is proposed, which can improve the efficiency of purging and enhance the reliability of the motor. |
doi_str_mv | 10.1109/ACCESS.2022.3172353 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9766376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9766376</ieee_id><doaj_id>oai_doaj_org_article_15fe808d9206441a8ce6a1b48d9c9941</doaj_id><sourcerecordid>2663643436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2533-9f274f176d849954681830af8f529bbc64a48d5dfb7ac052888197d9faa167ca3</originalsourceid><addsrcrecordid>eNpNkUtLAzEUhQdRsNT-gm4GXE_Na_JYllK1ULFYH8uQZpIxZZzUZCr6702dUrybe_k45yRwsmwMwQRCIG6ms9l8vZ4ggNAEQ4Zwic-yAYJUFOmk5__uy2wU4xak4QmVbJC9PZloVNDvuW_z1T7Urq1z1Vb5q2k716jOHXjwdTAx5t7mKx9d575MsTqQfTD5_HvXJOjbhHxSPPjOh6vswqommtFxD7OX2_nz7L5YPt4tZtNloVGJcSEsYsRCRitOhCgJ5ZBjoCy3JRKbjaZEEV6Vld0wpUGJOOdQsEpYpSBlWuFhtuhzK6-2chfchwo_0isn_4APtVShc7oxEpbWcMArgQAlBCquDVVwk_KFFoLAlHXdZ-2C_9yb2Mmt34c2fV8iSjElmGCaVLhX6eBjDMaeXoVAHgqRfSHyUIg8FpJc497ljDEnh2Apl1H8C1w9hgI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663643436</pqid></control><display><type>article</type><title>Research on Purging and Ventilation Progress of Positive-Pressure Explosion-Proof Motor</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Wenhui ; Ai, Mengmeng ; Xu, Lishen ; Gou, Han</creator><creatorcontrib>Liu, Wenhui ; Ai, Mengmeng ; Xu, Lishen ; Gou, Han</creatorcontrib><description>In order to solve the problems of time-consuming, high-cost and poor safety in the purging and ventilation progress test of positive pressure explosion-proof motor, the multi-component fluid theory is introduced to analyze the positive-pressure explosion-proof motor. According to the basic explosion-proof principle and key problems of purging and ventilation progress simulation of positive-pressure explosion-proof motor, the explosion-proof finite element model of the motor is established, and the purging and ventilation progress of the motor is simulated and analyzed by multi-component fluid theory. By controlling the concentration of He (helium), the explosive environment and the purging process of the motor can be achieved, and it can be known whether there is a purging dead angle in the motor by observing the transient concentration of each component, which enhances the safety performance of the motor. Then the accuracy of the simulation is verified by experiments. Finally, based on the observation of the fluid components in the original motor, an optimization scheme of changing the intake pipe is proposed, which can improve the efficiency of purging and enhance the reliability of the motor.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3172353</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Atmospheric modeling ; Explosions ; Explosives ; Finite element method ; Fluids ; Intake pipes ; Mathematical models ; Monitoring ; multi-component transient concentration field ; Optimization ; Positive-pressure motor ; Purging ; purging and ventilation progress ; Safety ; Simulation ; Ventilation</subject><ispartof>IEEE access, 2022, Vol.10, p.48964-48972</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2533-9f274f176d849954681830af8f529bbc64a48d5dfb7ac052888197d9faa167ca3</citedby><cites>FETCH-LOGICAL-c2533-9f274f176d849954681830af8f529bbc64a48d5dfb7ac052888197d9faa167ca3</cites><orcidid>0000-0002-9891-8447 ; 0000-0002-0738-7573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9766376$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,4023,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Liu, Wenhui</creatorcontrib><creatorcontrib>Ai, Mengmeng</creatorcontrib><creatorcontrib>Xu, Lishen</creatorcontrib><creatorcontrib>Gou, Han</creatorcontrib><title>Research on Purging and Ventilation Progress of Positive-Pressure Explosion-Proof Motor</title><title>IEEE access</title><addtitle>Access</addtitle><description>In order to solve the problems of time-consuming, high-cost and poor safety in the purging and ventilation progress test of positive pressure explosion-proof motor, the multi-component fluid theory is introduced to analyze the positive-pressure explosion-proof motor. According to the basic explosion-proof principle and key problems of purging and ventilation progress simulation of positive-pressure explosion-proof motor, the explosion-proof finite element model of the motor is established, and the purging and ventilation progress of the motor is simulated and analyzed by multi-component fluid theory. By controlling the concentration of He (helium), the explosive environment and the purging process of the motor can be achieved, and it can be known whether there is a purging dead angle in the motor by observing the transient concentration of each component, which enhances the safety performance of the motor. Then the accuracy of the simulation is verified by experiments. Finally, based on the observation of the fluid components in the original motor, an optimization scheme of changing the intake pipe is proposed, which can improve the efficiency of purging and enhance the reliability of the motor.</description><subject>Analytical models</subject><subject>Atmospheric modeling</subject><subject>Explosions</subject><subject>Explosives</subject><subject>Finite element method</subject><subject>Fluids</subject><subject>Intake pipes</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>multi-component transient concentration field</subject><subject>Optimization</subject><subject>Positive-pressure motor</subject><subject>Purging</subject><subject>purging and ventilation progress</subject><subject>Safety</subject><subject>Simulation</subject><subject>Ventilation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLAzEUhQdRsNT-gm4GXE_Na_JYllK1ULFYH8uQZpIxZZzUZCr6702dUrybe_k45yRwsmwMwQRCIG6ms9l8vZ4ggNAEQ4Zwic-yAYJUFOmk5__uy2wU4xak4QmVbJC9PZloVNDvuW_z1T7Urq1z1Vb5q2k716jOHXjwdTAx5t7mKx9d575MsTqQfTD5_HvXJOjbhHxSPPjOh6vswqommtFxD7OX2_nz7L5YPt4tZtNloVGJcSEsYsRCRitOhCgJ5ZBjoCy3JRKbjaZEEV6Vld0wpUGJOOdQsEpYpSBlWuFhtuhzK6-2chfchwo_0isn_4APtVShc7oxEpbWcMArgQAlBCquDVVwk_KFFoLAlHXdZ-2C_9yb2Mmt34c2fV8iSjElmGCaVLhX6eBjDMaeXoVAHgqRfSHyUIg8FpJc497ljDEnh2Apl1H8C1w9hgI</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Liu, Wenhui</creator><creator>Ai, Mengmeng</creator><creator>Xu, Lishen</creator><creator>Gou, Han</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9891-8447</orcidid><orcidid>https://orcid.org/0000-0002-0738-7573</orcidid></search><sort><creationdate>2022</creationdate><title>Research on Purging and Ventilation Progress of Positive-Pressure Explosion-Proof Motor</title><author>Liu, Wenhui ; Ai, Mengmeng ; Xu, Lishen ; Gou, Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2533-9f274f176d849954681830af8f529bbc64a48d5dfb7ac052888197d9faa167ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical models</topic><topic>Atmospheric modeling</topic><topic>Explosions</topic><topic>Explosives</topic><topic>Finite element method</topic><topic>Fluids</topic><topic>Intake pipes</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>multi-component transient concentration field</topic><topic>Optimization</topic><topic>Positive-pressure motor</topic><topic>Purging</topic><topic>purging and ventilation progress</topic><topic>Safety</topic><topic>Simulation</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wenhui</creatorcontrib><creatorcontrib>Ai, Mengmeng</creatorcontrib><creatorcontrib>Xu, Lishen</creatorcontrib><creatorcontrib>Gou, Han</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wenhui</au><au>Ai, Mengmeng</au><au>Xu, Lishen</au><au>Gou, Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Purging and Ventilation Progress of Positive-Pressure Explosion-Proof Motor</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>48964</spage><epage>48972</epage><pages>48964-48972</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In order to solve the problems of time-consuming, high-cost and poor safety in the purging and ventilation progress test of positive pressure explosion-proof motor, the multi-component fluid theory is introduced to analyze the positive-pressure explosion-proof motor. According to the basic explosion-proof principle and key problems of purging and ventilation progress simulation of positive-pressure explosion-proof motor, the explosion-proof finite element model of the motor is established, and the purging and ventilation progress of the motor is simulated and analyzed by multi-component fluid theory. By controlling the concentration of He (helium), the explosive environment and the purging process of the motor can be achieved, and it can be known whether there is a purging dead angle in the motor by observing the transient concentration of each component, which enhances the safety performance of the motor. Then the accuracy of the simulation is verified by experiments. Finally, based on the observation of the fluid components in the original motor, an optimization scheme of changing the intake pipe is proposed, which can improve the efficiency of purging and enhance the reliability of the motor.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3172353</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9891-8447</orcidid><orcidid>https://orcid.org/0000-0002-0738-7573</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.48964-48972 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9766376 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Analytical models Atmospheric modeling Explosions Explosives Finite element method Fluids Intake pipes Mathematical models Monitoring multi-component transient concentration field Optimization Positive-pressure motor Purging purging and ventilation progress Safety Simulation Ventilation |
title | Research on Purging and Ventilation Progress of Positive-Pressure Explosion-Proof Motor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Purging%20and%20Ventilation%20Progress%20of%20Positive-Pressure%20Explosion-Proof%20Motor&rft.jtitle=IEEE%20access&rft.au=Liu,%20Wenhui&rft.date=2022&rft.volume=10&rft.spage=48964&rft.epage=48972&rft.pages=48964-48972&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3172353&rft_dat=%3Cproquest_ieee_%3E2663643436%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663643436&rft_id=info:pmid/&rft_ieee_id=9766376&rft_doaj_id=oai_doaj_org_article_15fe808d9206441a8ce6a1b48d9c9941&rfr_iscdi=true |