Research on Purging and Ventilation Progress of Positive-Pressure Explosion-Proof Motor

In order to solve the problems of time-consuming, high-cost and poor safety in the purging and ventilation progress test of positive pressure explosion-proof motor, the multi-component fluid theory is introduced to analyze the positive-pressure explosion-proof motor. According to the basic explosion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.48964-48972
Hauptverfasser: Liu, Wenhui, Ai, Mengmeng, Xu, Lishen, Gou, Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48972
container_issue
container_start_page 48964
container_title IEEE access
container_volume 10
creator Liu, Wenhui
Ai, Mengmeng
Xu, Lishen
Gou, Han
description In order to solve the problems of time-consuming, high-cost and poor safety in the purging and ventilation progress test of positive pressure explosion-proof motor, the multi-component fluid theory is introduced to analyze the positive-pressure explosion-proof motor. According to the basic explosion-proof principle and key problems of purging and ventilation progress simulation of positive-pressure explosion-proof motor, the explosion-proof finite element model of the motor is established, and the purging and ventilation progress of the motor is simulated and analyzed by multi-component fluid theory. By controlling the concentration of He (helium), the explosive environment and the purging process of the motor can be achieved, and it can be known whether there is a purging dead angle in the motor by observing the transient concentration of each component, which enhances the safety performance of the motor. Then the accuracy of the simulation is verified by experiments. Finally, based on the observation of the fluid components in the original motor, an optimization scheme of changing the intake pipe is proposed, which can improve the efficiency of purging and enhance the reliability of the motor.
doi_str_mv 10.1109/ACCESS.2022.3172353
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9766376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9766376</ieee_id><doaj_id>oai_doaj_org_article_15fe808d9206441a8ce6a1b48d9c9941</doaj_id><sourcerecordid>2663643436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2533-9f274f176d849954681830af8f529bbc64a48d5dfb7ac052888197d9faa167ca3</originalsourceid><addsrcrecordid>eNpNkUtLAzEUhQdRsNT-gm4GXE_Na_JYllK1ULFYH8uQZpIxZZzUZCr6702dUrybe_k45yRwsmwMwQRCIG6ms9l8vZ4ggNAEQ4Zwic-yAYJUFOmk5__uy2wU4xak4QmVbJC9PZloVNDvuW_z1T7Urq1z1Vb5q2k716jOHXjwdTAx5t7mKx9d575MsTqQfTD5_HvXJOjbhHxSPPjOh6vswqommtFxD7OX2_nz7L5YPt4tZtNloVGJcSEsYsRCRitOhCgJ5ZBjoCy3JRKbjaZEEV6Vld0wpUGJOOdQsEpYpSBlWuFhtuhzK6-2chfchwo_0isn_4APtVShc7oxEpbWcMArgQAlBCquDVVwk_KFFoLAlHXdZ-2C_9yb2Mmt34c2fV8iSjElmGCaVLhX6eBjDMaeXoVAHgqRfSHyUIg8FpJc497ljDEnh2Apl1H8C1w9hgI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663643436</pqid></control><display><type>article</type><title>Research on Purging and Ventilation Progress of Positive-Pressure Explosion-Proof Motor</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Wenhui ; Ai, Mengmeng ; Xu, Lishen ; Gou, Han</creator><creatorcontrib>Liu, Wenhui ; Ai, Mengmeng ; Xu, Lishen ; Gou, Han</creatorcontrib><description>In order to solve the problems of time-consuming, high-cost and poor safety in the purging and ventilation progress test of positive pressure explosion-proof motor, the multi-component fluid theory is introduced to analyze the positive-pressure explosion-proof motor. According to the basic explosion-proof principle and key problems of purging and ventilation progress simulation of positive-pressure explosion-proof motor, the explosion-proof finite element model of the motor is established, and the purging and ventilation progress of the motor is simulated and analyzed by multi-component fluid theory. By controlling the concentration of He (helium), the explosive environment and the purging process of the motor can be achieved, and it can be known whether there is a purging dead angle in the motor by observing the transient concentration of each component, which enhances the safety performance of the motor. Then the accuracy of the simulation is verified by experiments. Finally, based on the observation of the fluid components in the original motor, an optimization scheme of changing the intake pipe is proposed, which can improve the efficiency of purging and enhance the reliability of the motor.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3172353</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Atmospheric modeling ; Explosions ; Explosives ; Finite element method ; Fluids ; Intake pipes ; Mathematical models ; Monitoring ; multi-component transient concentration field ; Optimization ; Positive-pressure motor ; Purging ; purging and ventilation progress ; Safety ; Simulation ; Ventilation</subject><ispartof>IEEE access, 2022, Vol.10, p.48964-48972</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2533-9f274f176d849954681830af8f529bbc64a48d5dfb7ac052888197d9faa167ca3</citedby><cites>FETCH-LOGICAL-c2533-9f274f176d849954681830af8f529bbc64a48d5dfb7ac052888197d9faa167ca3</cites><orcidid>0000-0002-9891-8447 ; 0000-0002-0738-7573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9766376$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,4023,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Liu, Wenhui</creatorcontrib><creatorcontrib>Ai, Mengmeng</creatorcontrib><creatorcontrib>Xu, Lishen</creatorcontrib><creatorcontrib>Gou, Han</creatorcontrib><title>Research on Purging and Ventilation Progress of Positive-Pressure Explosion-Proof Motor</title><title>IEEE access</title><addtitle>Access</addtitle><description>In order to solve the problems of time-consuming, high-cost and poor safety in the purging and ventilation progress test of positive pressure explosion-proof motor, the multi-component fluid theory is introduced to analyze the positive-pressure explosion-proof motor. According to the basic explosion-proof principle and key problems of purging and ventilation progress simulation of positive-pressure explosion-proof motor, the explosion-proof finite element model of the motor is established, and the purging and ventilation progress of the motor is simulated and analyzed by multi-component fluid theory. By controlling the concentration of He (helium), the explosive environment and the purging process of the motor can be achieved, and it can be known whether there is a purging dead angle in the motor by observing the transient concentration of each component, which enhances the safety performance of the motor. Then the accuracy of the simulation is verified by experiments. Finally, based on the observation of the fluid components in the original motor, an optimization scheme of changing the intake pipe is proposed, which can improve the efficiency of purging and enhance the reliability of the motor.</description><subject>Analytical models</subject><subject>Atmospheric modeling</subject><subject>Explosions</subject><subject>Explosives</subject><subject>Finite element method</subject><subject>Fluids</subject><subject>Intake pipes</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>multi-component transient concentration field</subject><subject>Optimization</subject><subject>Positive-pressure motor</subject><subject>Purging</subject><subject>purging and ventilation progress</subject><subject>Safety</subject><subject>Simulation</subject><subject>Ventilation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLAzEUhQdRsNT-gm4GXE_Na_JYllK1ULFYH8uQZpIxZZzUZCr6702dUrybe_k45yRwsmwMwQRCIG6ms9l8vZ4ggNAEQ4Zwic-yAYJUFOmk5__uy2wU4xak4QmVbJC9PZloVNDvuW_z1T7Urq1z1Vb5q2k716jOHXjwdTAx5t7mKx9d575MsTqQfTD5_HvXJOjbhHxSPPjOh6vswqommtFxD7OX2_nz7L5YPt4tZtNloVGJcSEsYsRCRitOhCgJ5ZBjoCy3JRKbjaZEEV6Vld0wpUGJOOdQsEpYpSBlWuFhtuhzK6-2chfchwo_0isn_4APtVShc7oxEpbWcMArgQAlBCquDVVwk_KFFoLAlHXdZ-2C_9yb2Mmt34c2fV8iSjElmGCaVLhX6eBjDMaeXoVAHgqRfSHyUIg8FpJc497ljDEnh2Apl1H8C1w9hgI</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Liu, Wenhui</creator><creator>Ai, Mengmeng</creator><creator>Xu, Lishen</creator><creator>Gou, Han</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9891-8447</orcidid><orcidid>https://orcid.org/0000-0002-0738-7573</orcidid></search><sort><creationdate>2022</creationdate><title>Research on Purging and Ventilation Progress of Positive-Pressure Explosion-Proof Motor</title><author>Liu, Wenhui ; Ai, Mengmeng ; Xu, Lishen ; Gou, Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2533-9f274f176d849954681830af8f529bbc64a48d5dfb7ac052888197d9faa167ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical models</topic><topic>Atmospheric modeling</topic><topic>Explosions</topic><topic>Explosives</topic><topic>Finite element method</topic><topic>Fluids</topic><topic>Intake pipes</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>multi-component transient concentration field</topic><topic>Optimization</topic><topic>Positive-pressure motor</topic><topic>Purging</topic><topic>purging and ventilation progress</topic><topic>Safety</topic><topic>Simulation</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wenhui</creatorcontrib><creatorcontrib>Ai, Mengmeng</creatorcontrib><creatorcontrib>Xu, Lishen</creatorcontrib><creatorcontrib>Gou, Han</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wenhui</au><au>Ai, Mengmeng</au><au>Xu, Lishen</au><au>Gou, Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Purging and Ventilation Progress of Positive-Pressure Explosion-Proof Motor</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>48964</spage><epage>48972</epage><pages>48964-48972</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In order to solve the problems of time-consuming, high-cost and poor safety in the purging and ventilation progress test of positive pressure explosion-proof motor, the multi-component fluid theory is introduced to analyze the positive-pressure explosion-proof motor. According to the basic explosion-proof principle and key problems of purging and ventilation progress simulation of positive-pressure explosion-proof motor, the explosion-proof finite element model of the motor is established, and the purging and ventilation progress of the motor is simulated and analyzed by multi-component fluid theory. By controlling the concentration of He (helium), the explosive environment and the purging process of the motor can be achieved, and it can be known whether there is a purging dead angle in the motor by observing the transient concentration of each component, which enhances the safety performance of the motor. Then the accuracy of the simulation is verified by experiments. Finally, based on the observation of the fluid components in the original motor, an optimization scheme of changing the intake pipe is proposed, which can improve the efficiency of purging and enhance the reliability of the motor.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3172353</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9891-8447</orcidid><orcidid>https://orcid.org/0000-0002-0738-7573</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.48964-48972
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9766376
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Analytical models
Atmospheric modeling
Explosions
Explosives
Finite element method
Fluids
Intake pipes
Mathematical models
Monitoring
multi-component transient concentration field
Optimization
Positive-pressure motor
Purging
purging and ventilation progress
Safety
Simulation
Ventilation
title Research on Purging and Ventilation Progress of Positive-Pressure Explosion-Proof Motor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Purging%20and%20Ventilation%20Progress%20of%20Positive-Pressure%20Explosion-Proof%20Motor&rft.jtitle=IEEE%20access&rft.au=Liu,%20Wenhui&rft.date=2022&rft.volume=10&rft.spage=48964&rft.epage=48972&rft.pages=48964-48972&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3172353&rft_dat=%3Cproquest_ieee_%3E2663643436%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663643436&rft_id=info:pmid/&rft_ieee_id=9766376&rft_doaj_id=oai_doaj_org_article_15fe808d9206441a8ce6a1b48d9c9941&rfr_iscdi=true