An Efficient In-Memory Computing Architecture for Image Enhancement in AI Applications
Random spray retinex (RSR) is an effective image enhancement algorithm owing to its effectiveness in improving the image quality. However, the computing complexity of the algorithm, the required hardware resources, and memory access hamper its deployment in many application scenarios, for instance,...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.48229-48241 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48241 |
---|---|
container_issue | |
container_start_page | 48229 |
container_title | IEEE access |
container_volume | 10 |
creator | Bettayeb, Meriem Zayer, Fakhreddine Abunahla, Heba Gianini, Gabriele Mohammad, Baker |
description | Random spray retinex (RSR) is an effective image enhancement algorithm owing to its effectiveness in improving the image quality. However, the computing complexity of the algorithm, the required hardware resources, and memory access hamper its deployment in many application scenarios, for instance, in IoT systems with limited hardware resources. With the rise of artificial intelligence (AI), the use of image enhancement has become essential for improving the performance of many emerging applications. In this paper, we propose the use of RSR as a preprocessing filter before the task of semantic segmentation of low-quality urban road scenes. Using the publicly available Cityscapes dataset, we compared the performance of a pre-trained deep semantic segmentation network on dark and noisy images with that of RSR preprocessed images. Our findings confirm the effectiveness of RSR in improving segmentation accuracy. In addition, to address the computational complexity and suitability of edge devices, we propose a novel and efficient implementation of RSR using resistive random access memory (RRAM) technology. This architecture provides highly parallel analog in-memory computing (IMC) capabilities. A detailed, efficient, and low-latency implementation of RSR using RRAM-CMOS technology is described. The design was verified using SPICE simulations with measured data from the fabricated RRAM and 65 nm CMOS technologies. The approach presented here represents an important step towards a low-complexity, real-time hardware-friendly architecture and the design of retinex algorithms for edge devices. |
doi_str_mv | 10.1109/ACCESS.2022.3171799 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9766187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9766187</ieee_id><doaj_id>oai_doaj_org_article_07966ca88a0649ca9d0938c234fc299d</doaj_id><sourcerecordid>2662095214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-25e0fccde1aff7bc417d29e8ce1ffa6e030ce6b270bfcf88ef48c8a4453b4b403</originalsourceid><addsrcrecordid>eNpNkU9r3DAQxU1pICHNJ8hF0LO3-mdZOhqzbQ0JOaTtVcjj0UbLWnJl7yHfvt44hM5lhse8NwO_orhndMcYNd-att0_P-845XwnWM1qYz4VN5wpU4pKqM__zdfF3Twf6Vp6lar6pvjTRLL3PkDAuJAulo84pvxK2jRO5yXEA2kyvIQFYTlnJD5l0o3ugGQfX1wEHC-2EEnTkWaaTgHcElKcvxRX3p1mvHvvt8Xv7_tf7c_y4elH1zYPJUiql5JXSD3AgMx5X_cgWT1wgxqQee8UUkEBVc9r2nvwWqOXGrSTshK97CUVt0W35Q7JHe2Uw-jyq00u2Dch5YN1eQlwQktroxQ4rR1V0oAzAzVCAxfSAzdmWLO-bllTTn_POC_2mM45ru9brhSnpuJMrlti24Kc5jmj_7jKqL3wsBsPe-Fh33msrvvNFRDxw2FqpZiuxT88ooaO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662095214</pqid></control><display><type>article</type><title>An Efficient In-Memory Computing Architecture for Image Enhancement in AI Applications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bettayeb, Meriem ; Zayer, Fakhreddine ; Abunahla, Heba ; Gianini, Gabriele ; Mohammad, Baker</creator><creatorcontrib>Bettayeb, Meriem ; Zayer, Fakhreddine ; Abunahla, Heba ; Gianini, Gabriele ; Mohammad, Baker</creatorcontrib><description>Random spray retinex (RSR) is an effective image enhancement algorithm owing to its effectiveness in improving the image quality. However, the computing complexity of the algorithm, the required hardware resources, and memory access hamper its deployment in many application scenarios, for instance, in IoT systems with limited hardware resources. With the rise of artificial intelligence (AI), the use of image enhancement has become essential for improving the performance of many emerging applications. In this paper, we propose the use of RSR as a preprocessing filter before the task of semantic segmentation of low-quality urban road scenes. Using the publicly available Cityscapes dataset, we compared the performance of a pre-trained deep semantic segmentation network on dark and noisy images with that of RSR preprocessed images. Our findings confirm the effectiveness of RSR in improving segmentation accuracy. In addition, to address the computational complexity and suitability of edge devices, we propose a novel and efficient implementation of RSR using resistive random access memory (RRAM) technology. This architecture provides highly parallel analog in-memory computing (IMC) capabilities. A detailed, efficient, and low-latency implementation of RSR using RRAM-CMOS technology is described. The design was verified using SPICE simulations with measured data from the fabricated RRAM and 65 nm CMOS technologies. The approach presented here represents an important step towards a low-complexity, real-time hardware-friendly architecture and the design of retinex algorithms for edge devices.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3171799</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; CMOS ; Complexity ; Computation ; Computer architecture ; Field programmable gate arrays ; Hardware ; Image color analysis ; Image enhancement ; Image quality ; Image segmentation ; in-memory computing ; Memristor crossbar ; Memristors ; multiply and add (MAC) operations ; Network latency ; Random access memory ; random spray retinex ; Retinex (algorithm) ; scale-to-max filtering ; Semantic segmentation ; Semantics ; Visualization</subject><ispartof>IEEE access, 2022, Vol.10, p.48229-48241</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-25e0fccde1aff7bc417d29e8ce1ffa6e030ce6b270bfcf88ef48c8a4453b4b403</citedby><cites>FETCH-LOGICAL-c408t-25e0fccde1aff7bc417d29e8ce1ffa6e030ce6b270bfcf88ef48c8a4453b4b403</cites><orcidid>0000-0002-6063-473X ; 0000-0002-5357-2374 ; 0000-0002-0163-1395 ; 0000-0001-5186-0199 ; 0000-0003-1989-5951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9766187$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Bettayeb, Meriem</creatorcontrib><creatorcontrib>Zayer, Fakhreddine</creatorcontrib><creatorcontrib>Abunahla, Heba</creatorcontrib><creatorcontrib>Gianini, Gabriele</creatorcontrib><creatorcontrib>Mohammad, Baker</creatorcontrib><title>An Efficient In-Memory Computing Architecture for Image Enhancement in AI Applications</title><title>IEEE access</title><addtitle>Access</addtitle><description>Random spray retinex (RSR) is an effective image enhancement algorithm owing to its effectiveness in improving the image quality. However, the computing complexity of the algorithm, the required hardware resources, and memory access hamper its deployment in many application scenarios, for instance, in IoT systems with limited hardware resources. With the rise of artificial intelligence (AI), the use of image enhancement has become essential for improving the performance of many emerging applications. In this paper, we propose the use of RSR as a preprocessing filter before the task of semantic segmentation of low-quality urban road scenes. Using the publicly available Cityscapes dataset, we compared the performance of a pre-trained deep semantic segmentation network on dark and noisy images with that of RSR preprocessed images. Our findings confirm the effectiveness of RSR in improving segmentation accuracy. In addition, to address the computational complexity and suitability of edge devices, we propose a novel and efficient implementation of RSR using resistive random access memory (RRAM) technology. This architecture provides highly parallel analog in-memory computing (IMC) capabilities. A detailed, efficient, and low-latency implementation of RSR using RRAM-CMOS technology is described. The design was verified using SPICE simulations with measured data from the fabricated RRAM and 65 nm CMOS technologies. The approach presented here represents an important step towards a low-complexity, real-time hardware-friendly architecture and the design of retinex algorithms for edge devices.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>CMOS</subject><subject>Complexity</subject><subject>Computation</subject><subject>Computer architecture</subject><subject>Field programmable gate arrays</subject><subject>Hardware</subject><subject>Image color analysis</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>in-memory computing</subject><subject>Memristor crossbar</subject><subject>Memristors</subject><subject>multiply and add (MAC) operations</subject><subject>Network latency</subject><subject>Random access memory</subject><subject>random spray retinex</subject><subject>Retinex (algorithm)</subject><subject>scale-to-max filtering</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9r3DAQxU1pICHNJ8hF0LO3-mdZOhqzbQ0JOaTtVcjj0UbLWnJl7yHfvt44hM5lhse8NwO_orhndMcYNd-att0_P-845XwnWM1qYz4VN5wpU4pKqM__zdfF3Twf6Vp6lar6pvjTRLL3PkDAuJAulo84pvxK2jRO5yXEA2kyvIQFYTlnJD5l0o3ugGQfX1wEHC-2EEnTkWaaTgHcElKcvxRX3p1mvHvvt8Xv7_tf7c_y4elH1zYPJUiql5JXSD3AgMx5X_cgWT1wgxqQee8UUkEBVc9r2nvwWqOXGrSTshK97CUVt0W35Q7JHe2Uw-jyq00u2Dch5YN1eQlwQktroxQ4rR1V0oAzAzVCAxfSAzdmWLO-bllTTn_POC_2mM45ru9brhSnpuJMrlti24Kc5jmj_7jKqL3wsBsPe-Fh33msrvvNFRDxw2FqpZiuxT88ooaO</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Bettayeb, Meriem</creator><creator>Zayer, Fakhreddine</creator><creator>Abunahla, Heba</creator><creator>Gianini, Gabriele</creator><creator>Mohammad, Baker</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6063-473X</orcidid><orcidid>https://orcid.org/0000-0002-5357-2374</orcidid><orcidid>https://orcid.org/0000-0002-0163-1395</orcidid><orcidid>https://orcid.org/0000-0001-5186-0199</orcidid><orcidid>https://orcid.org/0000-0003-1989-5951</orcidid></search><sort><creationdate>2022</creationdate><title>An Efficient In-Memory Computing Architecture for Image Enhancement in AI Applications</title><author>Bettayeb, Meriem ; Zayer, Fakhreddine ; Abunahla, Heba ; Gianini, Gabriele ; Mohammad, Baker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-25e0fccde1aff7bc417d29e8ce1ffa6e030ce6b270bfcf88ef48c8a4453b4b403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>CMOS</topic><topic>Complexity</topic><topic>Computation</topic><topic>Computer architecture</topic><topic>Field programmable gate arrays</topic><topic>Hardware</topic><topic>Image color analysis</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>in-memory computing</topic><topic>Memristor crossbar</topic><topic>Memristors</topic><topic>multiply and add (MAC) operations</topic><topic>Network latency</topic><topic>Random access memory</topic><topic>random spray retinex</topic><topic>Retinex (algorithm)</topic><topic>scale-to-max filtering</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bettayeb, Meriem</creatorcontrib><creatorcontrib>Zayer, Fakhreddine</creatorcontrib><creatorcontrib>Abunahla, Heba</creatorcontrib><creatorcontrib>Gianini, Gabriele</creatorcontrib><creatorcontrib>Mohammad, Baker</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bettayeb, Meriem</au><au>Zayer, Fakhreddine</au><au>Abunahla, Heba</au><au>Gianini, Gabriele</au><au>Mohammad, Baker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient In-Memory Computing Architecture for Image Enhancement in AI Applications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>48229</spage><epage>48241</epage><pages>48229-48241</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Random spray retinex (RSR) is an effective image enhancement algorithm owing to its effectiveness in improving the image quality. However, the computing complexity of the algorithm, the required hardware resources, and memory access hamper its deployment in many application scenarios, for instance, in IoT systems with limited hardware resources. With the rise of artificial intelligence (AI), the use of image enhancement has become essential for improving the performance of many emerging applications. In this paper, we propose the use of RSR as a preprocessing filter before the task of semantic segmentation of low-quality urban road scenes. Using the publicly available Cityscapes dataset, we compared the performance of a pre-trained deep semantic segmentation network on dark and noisy images with that of RSR preprocessed images. Our findings confirm the effectiveness of RSR in improving segmentation accuracy. In addition, to address the computational complexity and suitability of edge devices, we propose a novel and efficient implementation of RSR using resistive random access memory (RRAM) technology. This architecture provides highly parallel analog in-memory computing (IMC) capabilities. A detailed, efficient, and low-latency implementation of RSR using RRAM-CMOS technology is described. The design was verified using SPICE simulations with measured data from the fabricated RRAM and 65 nm CMOS technologies. The approach presented here represents an important step towards a low-complexity, real-time hardware-friendly architecture and the design of retinex algorithms for edge devices.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3171799</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6063-473X</orcidid><orcidid>https://orcid.org/0000-0002-5357-2374</orcidid><orcidid>https://orcid.org/0000-0002-0163-1395</orcidid><orcidid>https://orcid.org/0000-0001-5186-0199</orcidid><orcidid>https://orcid.org/0000-0003-1989-5951</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.48229-48241 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9766187 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Artificial intelligence CMOS Complexity Computation Computer architecture Field programmable gate arrays Hardware Image color analysis Image enhancement Image quality Image segmentation in-memory computing Memristor crossbar Memristors multiply and add (MAC) operations Network latency Random access memory random spray retinex Retinex (algorithm) scale-to-max filtering Semantic segmentation Semantics Visualization |
title | An Efficient In-Memory Computing Architecture for Image Enhancement in AI Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20In-Memory%20Computing%20Architecture%20for%20Image%20Enhancement%20in%20AI%20Applications&rft.jtitle=IEEE%20access&rft.au=Bettayeb,%20Meriem&rft.date=2022&rft.volume=10&rft.spage=48229&rft.epage=48241&rft.pages=48229-48241&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3171799&rft_dat=%3Cproquest_ieee_%3E2662095214%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662095214&rft_id=info:pmid/&rft_ieee_id=9766187&rft_doaj_id=oai_doaj_org_article_07966ca88a0649ca9d0938c234fc299d&rfr_iscdi=true |