A Framework for Remote Interaction and Management of Home Care Elderly Adults

Growing aging population highlights the importance of managing chronic diseases. The rapid development of Internet of Things (IoT) and big data analysis makes it feasible and affordable to monitor and manage chronic diseases for caring at home. The process of chronic diseases management involves mon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2022-06, Vol.22 (11), p.11034-11044
Hauptverfasser: Zhang, Bin, Zhu, Leqi, Pei, Zichen, Zhai, Qian, Zhu, Junhong, Zhong, Xiang, Yi, Jingang, Liu, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11044
container_issue 11
container_start_page 11034
container_title IEEE sensors journal
container_volume 22
creator Zhang, Bin
Zhu, Leqi
Pei, Zichen
Zhai, Qian
Zhu, Junhong
Zhong, Xiang
Yi, Jingang
Liu, Tao
description Growing aging population highlights the importance of managing chronic diseases. The rapid development of Internet of Things (IoT) and big data analysis makes it feasible and affordable to monitor and manage chronic diseases for caring at home. The process of chronic diseases management involves monitoring rehabilitation and recovery, tracking physiological and behavioral status, and health condition classification and diagnosis. In this paper, we proposed a framework for monitoring and management of home care elderly adults. A three-level architecture, which is IoT-Intelligent Terminal(IT)-Cloud, is established to achieve data acquisition, signal transmission, remote interaction and diagnosis. Five diagnosis methods including Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K Near Neighbor (KNN), and Back Process Neural Network (BPNN) are implemented to evaluate the risk of suffering from heart disease and experiments showed the accuracy is over 95%. Experimental result reveals that the data flow and remote interaction in this system are effective and primary diagnosis is validated.
doi_str_mv 10.1109/JSEN.2022.3170295
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9762956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9762956</ieee_id><sourcerecordid>2672088969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b0acc50164e6a52f442ef9987160ea76296fe9cdc734deffc63443634d64443e3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_Na5LJspS-pFXwAe5CzNxI68ykZlKk_94ZWtzcexbn3Hv4ELqlZEQp0Q-Pr9OnESOMjThVhOn8DA1onhcZVaI47zUnmeDq4xJdte2WEKpVrgZoPcazaGv4DfEb-xDxC9QhAV42CaJ1aRMabJsSr21jv6CGJuHg8SLUgCc2Ap5WJcTqgMflvkrtNbrwtmrh5rSH6H02fZssstXzfDkZrzLHNE_ZJ7HO5YRKAdLmzAvBwGtdKCoJWCWZlh60K53iogTvneRC8G6UUnQC-BDdH-_uYvjZQ5vMNuxj0700TCpGikJL3bno0eViaNsI3uziprbxYCgxPTXTUzM9NXOi1mXujpkNAPz7dd8pl_wP1jpndw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672088969</pqid></control><display><type>article</type><title>A Framework for Remote Interaction and Management of Home Care Elderly Adults</title><source>IEEE Xplore</source><creator>Zhang, Bin ; Zhu, Leqi ; Pei, Zichen ; Zhai, Qian ; Zhu, Junhong ; Zhong, Xiang ; Yi, Jingang ; Liu, Tao</creator><creatorcontrib>Zhang, Bin ; Zhu, Leqi ; Pei, Zichen ; Zhai, Qian ; Zhu, Junhong ; Zhong, Xiang ; Yi, Jingang ; Liu, Tao</creatorcontrib><description>Growing aging population highlights the importance of managing chronic diseases. The rapid development of Internet of Things (IoT) and big data analysis makes it feasible and affordable to monitor and manage chronic diseases for caring at home. The process of chronic diseases management involves monitoring rehabilitation and recovery, tracking physiological and behavioral status, and health condition classification and diagnosis. In this paper, we proposed a framework for monitoring and management of home care elderly adults. A three-level architecture, which is IoT-Intelligent Terminal(IT)-Cloud, is established to achieve data acquisition, signal transmission, remote interaction and diagnosis. Five diagnosis methods including Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K Near Neighbor (KNN), and Back Process Neural Network (BPNN) are implemented to evaluate the risk of suffering from heart disease and experiments showed the accuracy is over 95%. Experimental result reveals that the data flow and remote interaction in this system are effective and primary diagnosis is validated.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3170295</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adults ; Artificial neural networks ; Big Data ; Biomedical monitoring ; Cameras ; Chronic illnesses ; Data acquisition ; Data analysis ; Decision trees ; Diagnosis ; Diseases ; Heart diseases ; Internet of Things ; millimeter wave sensors ; Monitoring ; Neural networks ; Older people ; Radar ; Rehabilitation ; sensor data processing ; Sensor system integration ; sensor system networks ; Sensors ; Signal transmission ; Support vector machines ; Telemedicine ; Wearable sensors</subject><ispartof>IEEE sensors journal, 2022-06, Vol.22 (11), p.11034-11044</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b0acc50164e6a52f442ef9987160ea76296fe9cdc734deffc63443634d64443e3</citedby><cites>FETCH-LOGICAL-c293t-b0acc50164e6a52f442ef9987160ea76296fe9cdc734deffc63443634d64443e3</cites><orcidid>0000-0002-6214-5876 ; 0000-0002-2797-0264 ; 0000-0003-0628-9098 ; 0000-0002-8612-0745 ; 0000-0002-8217-4930 ; 0000-0001-8426-1205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9762956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9762956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Zhu, Leqi</creatorcontrib><creatorcontrib>Pei, Zichen</creatorcontrib><creatorcontrib>Zhai, Qian</creatorcontrib><creatorcontrib>Zhu, Junhong</creatorcontrib><creatorcontrib>Zhong, Xiang</creatorcontrib><creatorcontrib>Yi, Jingang</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><title>A Framework for Remote Interaction and Management of Home Care Elderly Adults</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Growing aging population highlights the importance of managing chronic diseases. The rapid development of Internet of Things (IoT) and big data analysis makes it feasible and affordable to monitor and manage chronic diseases for caring at home. The process of chronic diseases management involves monitoring rehabilitation and recovery, tracking physiological and behavioral status, and health condition classification and diagnosis. In this paper, we proposed a framework for monitoring and management of home care elderly adults. A three-level architecture, which is IoT-Intelligent Terminal(IT)-Cloud, is established to achieve data acquisition, signal transmission, remote interaction and diagnosis. Five diagnosis methods including Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K Near Neighbor (KNN), and Back Process Neural Network (BPNN) are implemented to evaluate the risk of suffering from heart disease and experiments showed the accuracy is over 95%. Experimental result reveals that the data flow and remote interaction in this system are effective and primary diagnosis is validated.</description><subject>Adults</subject><subject>Artificial neural networks</subject><subject>Big Data</subject><subject>Biomedical monitoring</subject><subject>Cameras</subject><subject>Chronic illnesses</subject><subject>Data acquisition</subject><subject>Data analysis</subject><subject>Decision trees</subject><subject>Diagnosis</subject><subject>Diseases</subject><subject>Heart diseases</subject><subject>Internet of Things</subject><subject>millimeter wave sensors</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Older people</subject><subject>Radar</subject><subject>Rehabilitation</subject><subject>sensor data processing</subject><subject>Sensor system integration</subject><subject>sensor system networks</subject><subject>Sensors</subject><subject>Signal transmission</subject><subject>Support vector machines</subject><subject>Telemedicine</subject><subject>Wearable sensors</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_Na5LJspS-pFXwAe5CzNxI68ykZlKk_94ZWtzcexbn3Hv4ELqlZEQp0Q-Pr9OnESOMjThVhOn8DA1onhcZVaI47zUnmeDq4xJdte2WEKpVrgZoPcazaGv4DfEb-xDxC9QhAV42CaJ1aRMabJsSr21jv6CGJuHg8SLUgCc2Ap5WJcTqgMflvkrtNbrwtmrh5rSH6H02fZssstXzfDkZrzLHNE_ZJ7HO5YRKAdLmzAvBwGtdKCoJWCWZlh60K53iogTvneRC8G6UUnQC-BDdH-_uYvjZQ5vMNuxj0700TCpGikJL3bno0eViaNsI3uziprbxYCgxPTXTUzM9NXOi1mXujpkNAPz7dd8pl_wP1jpndw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Zhang, Bin</creator><creator>Zhu, Leqi</creator><creator>Pei, Zichen</creator><creator>Zhai, Qian</creator><creator>Zhu, Junhong</creator><creator>Zhong, Xiang</creator><creator>Yi, Jingang</creator><creator>Liu, Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6214-5876</orcidid><orcidid>https://orcid.org/0000-0002-2797-0264</orcidid><orcidid>https://orcid.org/0000-0003-0628-9098</orcidid><orcidid>https://orcid.org/0000-0002-8612-0745</orcidid><orcidid>https://orcid.org/0000-0002-8217-4930</orcidid><orcidid>https://orcid.org/0000-0001-8426-1205</orcidid></search><sort><creationdate>20220601</creationdate><title>A Framework for Remote Interaction and Management of Home Care Elderly Adults</title><author>Zhang, Bin ; Zhu, Leqi ; Pei, Zichen ; Zhai, Qian ; Zhu, Junhong ; Zhong, Xiang ; Yi, Jingang ; Liu, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b0acc50164e6a52f442ef9987160ea76296fe9cdc734deffc63443634d64443e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adults</topic><topic>Artificial neural networks</topic><topic>Big Data</topic><topic>Biomedical monitoring</topic><topic>Cameras</topic><topic>Chronic illnesses</topic><topic>Data acquisition</topic><topic>Data analysis</topic><topic>Decision trees</topic><topic>Diagnosis</topic><topic>Diseases</topic><topic>Heart diseases</topic><topic>Internet of Things</topic><topic>millimeter wave sensors</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Older people</topic><topic>Radar</topic><topic>Rehabilitation</topic><topic>sensor data processing</topic><topic>Sensor system integration</topic><topic>sensor system networks</topic><topic>Sensors</topic><topic>Signal transmission</topic><topic>Support vector machines</topic><topic>Telemedicine</topic><topic>Wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Zhu, Leqi</creatorcontrib><creatorcontrib>Pei, Zichen</creatorcontrib><creatorcontrib>Zhai, Qian</creatorcontrib><creatorcontrib>Zhu, Junhong</creatorcontrib><creatorcontrib>Zhong, Xiang</creatorcontrib><creatorcontrib>Yi, Jingang</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Bin</au><au>Zhu, Leqi</au><au>Pei, Zichen</au><au>Zhai, Qian</au><au>Zhu, Junhong</au><au>Zhong, Xiang</au><au>Yi, Jingang</au><au>Liu, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Framework for Remote Interaction and Management of Home Care Elderly Adults</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>22</volume><issue>11</issue><spage>11034</spage><epage>11044</epage><pages>11034-11044</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Growing aging population highlights the importance of managing chronic diseases. The rapid development of Internet of Things (IoT) and big data analysis makes it feasible and affordable to monitor and manage chronic diseases for caring at home. The process of chronic diseases management involves monitoring rehabilitation and recovery, tracking physiological and behavioral status, and health condition classification and diagnosis. In this paper, we proposed a framework for monitoring and management of home care elderly adults. A three-level architecture, which is IoT-Intelligent Terminal(IT)-Cloud, is established to achieve data acquisition, signal transmission, remote interaction and diagnosis. Five diagnosis methods including Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K Near Neighbor (KNN), and Back Process Neural Network (BPNN) are implemented to evaluate the risk of suffering from heart disease and experiments showed the accuracy is over 95%. Experimental result reveals that the data flow and remote interaction in this system are effective and primary diagnosis is validated.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3170295</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6214-5876</orcidid><orcidid>https://orcid.org/0000-0002-2797-0264</orcidid><orcidid>https://orcid.org/0000-0003-0628-9098</orcidid><orcidid>https://orcid.org/0000-0002-8612-0745</orcidid><orcidid>https://orcid.org/0000-0002-8217-4930</orcidid><orcidid>https://orcid.org/0000-0001-8426-1205</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-06, Vol.22 (11), p.11034-11044
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9762956
source IEEE Xplore
subjects Adults
Artificial neural networks
Big Data
Biomedical monitoring
Cameras
Chronic illnesses
Data acquisition
Data analysis
Decision trees
Diagnosis
Diseases
Heart diseases
Internet of Things
millimeter wave sensors
Monitoring
Neural networks
Older people
Radar
Rehabilitation
sensor data processing
Sensor system integration
sensor system networks
Sensors
Signal transmission
Support vector machines
Telemedicine
Wearable sensors
title A Framework for Remote Interaction and Management of Home Care Elderly Adults
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Framework%20for%20Remote%20Interaction%20and%20Management%20of%20Home%20Care%20Elderly%20Adults&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhang,%20Bin&rft.date=2022-06-01&rft.volume=22&rft.issue=11&rft.spage=11034&rft.epage=11044&rft.pages=11034-11044&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3170295&rft_dat=%3Cproquest_RIE%3E2672088969%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672088969&rft_id=info:pmid/&rft_ieee_id=9762956&rfr_iscdi=true