Economically Optimal and Stability Preserving Hybrid Droop Control for Autonomous Microgrids

Cost-based droop schemes for microgrids (MG) have been developed to achieve cost reduction; meanwhile, microgrid stability depends on the droop control design and its parameters. This paper proposes a hybrid cost-based droop control that achieves both optimal economical operation and stability prese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2023-01, Vol.38 (1), p.934-947
Hauptverfasser: Hamad, Basil, Al-Durra, Ahmed, EL-Fouly, Tarek H. M., Zeineldin, Hatem H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 947
container_issue 1
container_start_page 934
container_title IEEE transactions on power systems
container_volume 38
creator Hamad, Basil
Al-Durra, Ahmed
EL-Fouly, Tarek H. M.
Zeineldin, Hatem H.
description Cost-based droop schemes for microgrids (MG) have been developed to achieve cost reduction; meanwhile, microgrid stability depends on the droop control design and its parameters. This paper proposes a hybrid cost-based droop control that achieves both optimal economical operation and stability preserving for autonomous microgrids. The impact of cost-based droop schemes on stability is investigated utilizing a modified cost-based small-signal linearized model. Low-frequency eigenvalues tend to migrate towards instability when the load increases if a cost-based droop scheme is adopted. The proposed hybrid droop control manages to achieve the optimal generation by incorporating the incremental cost in the active power droop while ensuring stable performance by utilizing active and reactive power derivative controllers. The reactive power derivative controller is utilized to suppress the migration of the low-frequency eigenvalues towards instability. The active power derivative controller is utilized to damp the oscillations of the active power-sharing among the distributed generators (DG). The effectiveness of the proposed droop control to ensure an optimal and stable operation is validated on Matlab/Simulink.
doi_str_mv 10.1109/TPWRS.2022.3169801
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9762516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9762516</ieee_id><sourcerecordid>2757177489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-e9468babd5ac6b3e92ffb8705a84af5ae8e576179b7f95058af9b008e4d59733</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKd_QF8CPncmadMkj2NOJ0w23MAXISRtMjK6piat0H9v54ZP9-Gec-49HwD3GE0wRuJpu_782EwIImSS4lxwhC_ACFPKE5QzcQlGiHOacEHRNbiJcY8QyofFCHzNC1_7gytUVfVw1bTuoCqo6hJuWqVd5doeroOJJvy4egcXvQ6uhM_B-wbOfN0GX0HrA5x27THHdxG-uyL43SCLt-DKqiqau_Mcg-3LfDtbJMvV69tsukwKQmibGJHlXCtdUlXkOjWCWKs5Q1TxTFmqDDeU5ZgJzezQgHJlhUaIm6ykgqXpGDyeYpvgvzsTW7n3XaiHi5IwyjBjGReDipxUw3cxBmNlE4ayoZcYySNE-QdRHiHKM8TB9HAyOWPMv0GwnFCcp7_d1G-e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757177489</pqid></control><display><type>article</type><title>Economically Optimal and Stability Preserving Hybrid Droop Control for Autonomous Microgrids</title><source>IEEE Electronic Library Online</source><creator>Hamad, Basil ; Al-Durra, Ahmed ; EL-Fouly, Tarek H. M. ; Zeineldin, Hatem H.</creator><creatorcontrib>Hamad, Basil ; Al-Durra, Ahmed ; EL-Fouly, Tarek H. M. ; Zeineldin, Hatem H.</creatorcontrib><description>Cost-based droop schemes for microgrids (MG) have been developed to achieve cost reduction; meanwhile, microgrid stability depends on the droop control design and its parameters. This paper proposes a hybrid cost-based droop control that achieves both optimal economical operation and stability preserving for autonomous microgrids. The impact of cost-based droop schemes on stability is investigated utilizing a modified cost-based small-signal linearized model. Low-frequency eigenvalues tend to migrate towards instability when the load increases if a cost-based droop scheme is adopted. The proposed hybrid droop control manages to achieve the optimal generation by incorporating the incremental cost in the active power droop while ensuring stable performance by utilizing active and reactive power derivative controllers. The reactive power derivative controller is utilized to suppress the migration of the low-frequency eigenvalues towards instability. The active power derivative controller is utilized to damp the oscillations of the active power-sharing among the distributed generators (DG). The effectiveness of the proposed droop control to ensure an optimal and stable operation is validated on Matlab/Simulink.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2022.3169801</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Controllers ; Cost function ; Costs ; Design parameters ; Distributed generation ; droop control ; economic dispatch ; Eigenvalues ; Frequency stability ; Impact analysis ; isolated microgrids ; Mathematical models ; Microgrids ; Power system stability ; Reactive power ; small-signal stability ; Stability analysis</subject><ispartof>IEEE transactions on power systems, 2023-01, Vol.38 (1), p.934-947</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-e9468babd5ac6b3e92ffb8705a84af5ae8e576179b7f95058af9b008e4d59733</citedby><cites>FETCH-LOGICAL-c225t-e9468babd5ac6b3e92ffb8705a84af5ae8e576179b7f95058af9b008e4d59733</cites><orcidid>0000-0002-6629-5134 ; 0000-0002-3349-417X ; 0000-0001-7218-4126 ; 0000-0003-1500-1260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9762516$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9762516$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hamad, Basil</creatorcontrib><creatorcontrib>Al-Durra, Ahmed</creatorcontrib><creatorcontrib>EL-Fouly, Tarek H. M.</creatorcontrib><creatorcontrib>Zeineldin, Hatem H.</creatorcontrib><title>Economically Optimal and Stability Preserving Hybrid Droop Control for Autonomous Microgrids</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Cost-based droop schemes for microgrids (MG) have been developed to achieve cost reduction; meanwhile, microgrid stability depends on the droop control design and its parameters. This paper proposes a hybrid cost-based droop control that achieves both optimal economical operation and stability preserving for autonomous microgrids. The impact of cost-based droop schemes on stability is investigated utilizing a modified cost-based small-signal linearized model. Low-frequency eigenvalues tend to migrate towards instability when the load increases if a cost-based droop scheme is adopted. The proposed hybrid droop control manages to achieve the optimal generation by incorporating the incremental cost in the active power droop while ensuring stable performance by utilizing active and reactive power derivative controllers. The reactive power derivative controller is utilized to suppress the migration of the low-frequency eigenvalues towards instability. The active power derivative controller is utilized to damp the oscillations of the active power-sharing among the distributed generators (DG). The effectiveness of the proposed droop control to ensure an optimal and stable operation is validated on Matlab/Simulink.</description><subject>Controllers</subject><subject>Cost function</subject><subject>Costs</subject><subject>Design parameters</subject><subject>Distributed generation</subject><subject>droop control</subject><subject>economic dispatch</subject><subject>Eigenvalues</subject><subject>Frequency stability</subject><subject>Impact analysis</subject><subject>isolated microgrids</subject><subject>Mathematical models</subject><subject>Microgrids</subject><subject>Power system stability</subject><subject>Reactive power</subject><subject>small-signal stability</subject><subject>Stability analysis</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKd_QF8CPncmadMkj2NOJ0w23MAXISRtMjK6piat0H9v54ZP9-Gec-49HwD3GE0wRuJpu_782EwIImSS4lxwhC_ACFPKE5QzcQlGiHOacEHRNbiJcY8QyofFCHzNC1_7gytUVfVw1bTuoCqo6hJuWqVd5doeroOJJvy4egcXvQ6uhM_B-wbOfN0GX0HrA5x27THHdxG-uyL43SCLt-DKqiqau_Mcg-3LfDtbJMvV69tsukwKQmibGJHlXCtdUlXkOjWCWKs5Q1TxTFmqDDeU5ZgJzezQgHJlhUaIm6ykgqXpGDyeYpvgvzsTW7n3XaiHi5IwyjBjGReDipxUw3cxBmNlE4ayoZcYySNE-QdRHiHKM8TB9HAyOWPMv0GwnFCcp7_d1G-e</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Hamad, Basil</creator><creator>Al-Durra, Ahmed</creator><creator>EL-Fouly, Tarek H. M.</creator><creator>Zeineldin, Hatem H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6629-5134</orcidid><orcidid>https://orcid.org/0000-0002-3349-417X</orcidid><orcidid>https://orcid.org/0000-0001-7218-4126</orcidid><orcidid>https://orcid.org/0000-0003-1500-1260</orcidid></search><sort><creationdate>202301</creationdate><title>Economically Optimal and Stability Preserving Hybrid Droop Control for Autonomous Microgrids</title><author>Hamad, Basil ; Al-Durra, Ahmed ; EL-Fouly, Tarek H. M. ; Zeineldin, Hatem H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-e9468babd5ac6b3e92ffb8705a84af5ae8e576179b7f95058af9b008e4d59733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Controllers</topic><topic>Cost function</topic><topic>Costs</topic><topic>Design parameters</topic><topic>Distributed generation</topic><topic>droop control</topic><topic>economic dispatch</topic><topic>Eigenvalues</topic><topic>Frequency stability</topic><topic>Impact analysis</topic><topic>isolated microgrids</topic><topic>Mathematical models</topic><topic>Microgrids</topic><topic>Power system stability</topic><topic>Reactive power</topic><topic>small-signal stability</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamad, Basil</creatorcontrib><creatorcontrib>Al-Durra, Ahmed</creatorcontrib><creatorcontrib>EL-Fouly, Tarek H. M.</creatorcontrib><creatorcontrib>Zeineldin, Hatem H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hamad, Basil</au><au>Al-Durra, Ahmed</au><au>EL-Fouly, Tarek H. M.</au><au>Zeineldin, Hatem H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Economically Optimal and Stability Preserving Hybrid Droop Control for Autonomous Microgrids</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2023-01</date><risdate>2023</risdate><volume>38</volume><issue>1</issue><spage>934</spage><epage>947</epage><pages>934-947</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Cost-based droop schemes for microgrids (MG) have been developed to achieve cost reduction; meanwhile, microgrid stability depends on the droop control design and its parameters. This paper proposes a hybrid cost-based droop control that achieves both optimal economical operation and stability preserving for autonomous microgrids. The impact of cost-based droop schemes on stability is investigated utilizing a modified cost-based small-signal linearized model. Low-frequency eigenvalues tend to migrate towards instability when the load increases if a cost-based droop scheme is adopted. The proposed hybrid droop control manages to achieve the optimal generation by incorporating the incremental cost in the active power droop while ensuring stable performance by utilizing active and reactive power derivative controllers. The reactive power derivative controller is utilized to suppress the migration of the low-frequency eigenvalues towards instability. The active power derivative controller is utilized to damp the oscillations of the active power-sharing among the distributed generators (DG). The effectiveness of the proposed droop control to ensure an optimal and stable operation is validated on Matlab/Simulink.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2022.3169801</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6629-5134</orcidid><orcidid>https://orcid.org/0000-0002-3349-417X</orcidid><orcidid>https://orcid.org/0000-0001-7218-4126</orcidid><orcidid>https://orcid.org/0000-0003-1500-1260</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2023-01, Vol.38 (1), p.934-947
issn 0885-8950
1558-0679
language eng
recordid cdi_ieee_primary_9762516
source IEEE Electronic Library Online
subjects Controllers
Cost function
Costs
Design parameters
Distributed generation
droop control
economic dispatch
Eigenvalues
Frequency stability
Impact analysis
isolated microgrids
Mathematical models
Microgrids
Power system stability
Reactive power
small-signal stability
Stability analysis
title Economically Optimal and Stability Preserving Hybrid Droop Control for Autonomous Microgrids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T17%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Economically%20Optimal%20and%20Stability%20Preserving%20Hybrid%20Droop%20Control%20for%20Autonomous%20Microgrids&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Hamad,%20Basil&rft.date=2023-01&rft.volume=38&rft.issue=1&rft.spage=934&rft.epage=947&rft.pages=934-947&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2022.3169801&rft_dat=%3Cproquest_RIE%3E2757177489%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757177489&rft_id=info:pmid/&rft_ieee_id=9762516&rfr_iscdi=true