Analytical Calculation and Optimization of Superconducting Gravimeter Temperature Effect
High-resolution superconducting gravimeters (SGs) require μK-level temperature control. Passive isolation can increase the risk of quenching the superconducting gravity sensing unit. Also, the use of a vacuum chamber for passive isolation increases complexity and complicates the operation of the ins...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2022-08, Vol.32 (5), p.1-7 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 32 |
creator | Huang, Xing Hu, Xinning Zhang, Zili Cui, Chunyan Wang, Hao Niu, Feifei Zhang, Yuan Wang, Luzhong Wang, Qiuliang |
description | High-resolution superconducting gravimeters (SGs) require μK-level temperature control. Passive isolation can increase the risk of quenching the superconducting gravity sensing unit. Also, the use of a vacuum chamber for passive isolation increases complexity and complicates the operation of the instrument. Therefore, to investigate how to avoid using passive isolation, we developed an analytical computation model based on the Maxwell-London (ML) equations for calculating the magnetic levitation forces of the SG, taking into account the penetration depth characteristics of type II superconducting sphere. The model can be used to calculate the independent contributions of the upper and lower superconducting coils to the superconducting sphere levitation force, the magnetic gradient of the SG, and most importantly, the temperature coefficient of the SG temperature effect. Calculations show that temperature variations change the penetration depth and levitation force of the superconducting sphere and that the penetration depth determined at 4.2 K corresponds to a unique temperature coefficient, which means that the effect of the same temperature on the levitation force of the superconducting sphere is definite for a certain penetration depth. Further studies find that the temperature coefficient depends linearly on the effective penetration depth of the superconducting sphere, and the greater temperature coefficient than that of the smooth superconductor depends on the surface preparation and surface oxidation of the superconducting sphere. After discussion, it is clear that Nb coating on the surface of superconducting spheres is an effective solution to avoid passive isolation in the future. |
doi_str_mv | 10.1109/TASC.2022.3168880 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9762049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9762049</ieee_id><sourcerecordid>2665817705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1385-32ee8643713c0492e422ef78a1438dd46f474bb3e50e85b92280b18dd2fcb2af3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwseN6aTJLd7LGUWoVCD63gLWSzE0nZf2Z3hfrp3bLF0wzz3htmfoQ8MrpgjGYvh-V-tQAKsOAsUUrRKzJjUqoYJJPXY08lixUAvyV3XXeklAkl5Ix8LmtTnnpvTRmtTGmH0vS-qSNTF9Gu7X3lf6dB46L90GKwTV0Mtvf1V7QJ5sdX2GOIDliNmumHgNHaObT9Pblxpuzw4VLn5ON1fVi9xdvd5n213MaWcSVjDogqETxl3FKRAQoAdKkyTHBVFCJxIhV5zlFSVDLPABTN2aiAszkYx-fkedrbhuZ7wK7Xx2YI41OdhiSRiqUplaOLTS4bmq4L6HQbfGXCSTOqzwD1GaA-A9QXgGPmacp4RPz3Z2kC46H8D5GUbM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665817705</pqid></control><display><type>article</type><title>Analytical Calculation and Optimization of Superconducting Gravimeter Temperature Effect</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Xing ; Hu, Xinning ; Zhang, Zili ; Cui, Chunyan ; Wang, Hao ; Niu, Feifei ; Zhang, Yuan ; Wang, Luzhong ; Wang, Qiuliang</creator><creatorcontrib>Huang, Xing ; Hu, Xinning ; Zhang, Zili ; Cui, Chunyan ; Wang, Hao ; Niu, Feifei ; Zhang, Yuan ; Wang, Luzhong ; Wang, Qiuliang</creatorcontrib><description>High-resolution superconducting gravimeters (SGs) require μK-level temperature control. Passive isolation can increase the risk of quenching the superconducting gravity sensing unit. Also, the use of a vacuum chamber for passive isolation increases complexity and complicates the operation of the instrument. Therefore, to investigate how to avoid using passive isolation, we developed an analytical computation model based on the Maxwell-London (ML) equations for calculating the magnetic levitation forces of the SG, taking into account the penetration depth characteristics of type II superconducting sphere. The model can be used to calculate the independent contributions of the upper and lower superconducting coils to the superconducting sphere levitation force, the magnetic gradient of the SG, and most importantly, the temperature coefficient of the SG temperature effect. Calculations show that temperature variations change the penetration depth and levitation force of the superconducting sphere and that the penetration depth determined at 4.2 K corresponds to a unique temperature coefficient, which means that the effect of the same temperature on the levitation force of the superconducting sphere is definite for a certain penetration depth. Further studies find that the temperature coefficient depends linearly on the effective penetration depth of the superconducting sphere, and the greater temperature coefficient than that of the smooth superconductor depends on the surface preparation and surface oxidation of the superconducting sphere. After discussion, it is clear that Nb coating on the surface of superconducting spheres is an effective solution to avoid passive isolation in the future.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2022.3168880</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coefficients ; Coils ; Gravimeters ; Gravimetric analysis ; High-temperature superconductors ; Magnetic forces ; Magnetic levitation ; Mathematical analysis ; Mathematical models ; Optimization ; Oxidation ; Penetration depth ; Superconducting coils ; Superconducting magnets ; Superconductivity ; Surface preparation ; Temperature control ; temperature dependence ; Temperature effects ; Temperature measurement ; Type II superconductors ; Vacuum chambers</subject><ispartof>IEEE transactions on applied superconductivity, 2022-08, Vol.32 (5), p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1385-32ee8643713c0492e422ef78a1438dd46f474bb3e50e85b92280b18dd2fcb2af3</citedby><cites>FETCH-LOGICAL-c1385-32ee8643713c0492e422ef78a1438dd46f474bb3e50e85b92280b18dd2fcb2af3</cites><orcidid>0000-0001-6914-625X ; 0000-0002-5912-4003 ; 0000-0002-3065-211X ; 0000-0002-6322-6934 ; 0000-0002-2569-5748 ; 0000-0003-1101-9674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9762049$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9762049$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Xing</creatorcontrib><creatorcontrib>Hu, Xinning</creatorcontrib><creatorcontrib>Zhang, Zili</creatorcontrib><creatorcontrib>Cui, Chunyan</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Niu, Feifei</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Wang, Luzhong</creatorcontrib><creatorcontrib>Wang, Qiuliang</creatorcontrib><title>Analytical Calculation and Optimization of Superconducting Gravimeter Temperature Effect</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>High-resolution superconducting gravimeters (SGs) require μK-level temperature control. Passive isolation can increase the risk of quenching the superconducting gravity sensing unit. Also, the use of a vacuum chamber for passive isolation increases complexity and complicates the operation of the instrument. Therefore, to investigate how to avoid using passive isolation, we developed an analytical computation model based on the Maxwell-London (ML) equations for calculating the magnetic levitation forces of the SG, taking into account the penetration depth characteristics of type II superconducting sphere. The model can be used to calculate the independent contributions of the upper and lower superconducting coils to the superconducting sphere levitation force, the magnetic gradient of the SG, and most importantly, the temperature coefficient of the SG temperature effect. Calculations show that temperature variations change the penetration depth and levitation force of the superconducting sphere and that the penetration depth determined at 4.2 K corresponds to a unique temperature coefficient, which means that the effect of the same temperature on the levitation force of the superconducting sphere is definite for a certain penetration depth. Further studies find that the temperature coefficient depends linearly on the effective penetration depth of the superconducting sphere, and the greater temperature coefficient than that of the smooth superconductor depends on the surface preparation and surface oxidation of the superconducting sphere. After discussion, it is clear that Nb coating on the surface of superconducting spheres is an effective solution to avoid passive isolation in the future.</description><subject>Coefficients</subject><subject>Coils</subject><subject>Gravimeters</subject><subject>Gravimetric analysis</subject><subject>High-temperature superconductors</subject><subject>Magnetic forces</subject><subject>Magnetic levitation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Penetration depth</subject><subject>Superconducting coils</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>Surface preparation</subject><subject>Temperature control</subject><subject>temperature dependence</subject><subject>Temperature effects</subject><subject>Temperature measurement</subject><subject>Type II superconductors</subject><subject>Vacuum chambers</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwseN6aTJLd7LGUWoVCD63gLWSzE0nZf2Z3hfrp3bLF0wzz3htmfoQ8MrpgjGYvh-V-tQAKsOAsUUrRKzJjUqoYJJPXY08lixUAvyV3XXeklAkl5Ix8LmtTnnpvTRmtTGmH0vS-qSNTF9Gu7X3lf6dB46L90GKwTV0Mtvf1V7QJ5sdX2GOIDliNmumHgNHaObT9Pblxpuzw4VLn5ON1fVi9xdvd5n213MaWcSVjDogqETxl3FKRAQoAdKkyTHBVFCJxIhV5zlFSVDLPABTN2aiAszkYx-fkedrbhuZ7wK7Xx2YI41OdhiSRiqUplaOLTS4bmq4L6HQbfGXCSTOqzwD1GaA-A9QXgGPmacp4RPz3Z2kC46H8D5GUbM8</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Huang, Xing</creator><creator>Hu, Xinning</creator><creator>Zhang, Zili</creator><creator>Cui, Chunyan</creator><creator>Wang, Hao</creator><creator>Niu, Feifei</creator><creator>Zhang, Yuan</creator><creator>Wang, Luzhong</creator><creator>Wang, Qiuliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6914-625X</orcidid><orcidid>https://orcid.org/0000-0002-5912-4003</orcidid><orcidid>https://orcid.org/0000-0002-3065-211X</orcidid><orcidid>https://orcid.org/0000-0002-6322-6934</orcidid><orcidid>https://orcid.org/0000-0002-2569-5748</orcidid><orcidid>https://orcid.org/0000-0003-1101-9674</orcidid></search><sort><creationdate>202208</creationdate><title>Analytical Calculation and Optimization of Superconducting Gravimeter Temperature Effect</title><author>Huang, Xing ; Hu, Xinning ; Zhang, Zili ; Cui, Chunyan ; Wang, Hao ; Niu, Feifei ; Zhang, Yuan ; Wang, Luzhong ; Wang, Qiuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1385-32ee8643713c0492e422ef78a1438dd46f474bb3e50e85b92280b18dd2fcb2af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coefficients</topic><topic>Coils</topic><topic>Gravimeters</topic><topic>Gravimetric analysis</topic><topic>High-temperature superconductors</topic><topic>Magnetic forces</topic><topic>Magnetic levitation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Penetration depth</topic><topic>Superconducting coils</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>Surface preparation</topic><topic>Temperature control</topic><topic>temperature dependence</topic><topic>Temperature effects</topic><topic>Temperature measurement</topic><topic>Type II superconductors</topic><topic>Vacuum chambers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xing</creatorcontrib><creatorcontrib>Hu, Xinning</creatorcontrib><creatorcontrib>Zhang, Zili</creatorcontrib><creatorcontrib>Cui, Chunyan</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Niu, Feifei</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Wang, Luzhong</creatorcontrib><creatorcontrib>Wang, Qiuliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Xing</au><au>Hu, Xinning</au><au>Zhang, Zili</au><au>Cui, Chunyan</au><au>Wang, Hao</au><au>Niu, Feifei</au><au>Zhang, Yuan</au><au>Wang, Luzhong</au><au>Wang, Qiuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Calculation and Optimization of Superconducting Gravimeter Temperature Effect</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2022-08</date><risdate>2022</risdate><volume>32</volume><issue>5</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>High-resolution superconducting gravimeters (SGs) require μK-level temperature control. Passive isolation can increase the risk of quenching the superconducting gravity sensing unit. Also, the use of a vacuum chamber for passive isolation increases complexity and complicates the operation of the instrument. Therefore, to investigate how to avoid using passive isolation, we developed an analytical computation model based on the Maxwell-London (ML) equations for calculating the magnetic levitation forces of the SG, taking into account the penetration depth characteristics of type II superconducting sphere. The model can be used to calculate the independent contributions of the upper and lower superconducting coils to the superconducting sphere levitation force, the magnetic gradient of the SG, and most importantly, the temperature coefficient of the SG temperature effect. Calculations show that temperature variations change the penetration depth and levitation force of the superconducting sphere and that the penetration depth determined at 4.2 K corresponds to a unique temperature coefficient, which means that the effect of the same temperature on the levitation force of the superconducting sphere is definite for a certain penetration depth. Further studies find that the temperature coefficient depends linearly on the effective penetration depth of the superconducting sphere, and the greater temperature coefficient than that of the smooth superconductor depends on the surface preparation and surface oxidation of the superconducting sphere. After discussion, it is clear that Nb coating on the surface of superconducting spheres is an effective solution to avoid passive isolation in the future.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2022.3168880</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6914-625X</orcidid><orcidid>https://orcid.org/0000-0002-5912-4003</orcidid><orcidid>https://orcid.org/0000-0002-3065-211X</orcidid><orcidid>https://orcid.org/0000-0002-6322-6934</orcidid><orcidid>https://orcid.org/0000-0002-2569-5748</orcidid><orcidid>https://orcid.org/0000-0003-1101-9674</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2022-08, Vol.32 (5), p.1-7 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_9762049 |
source | IEEE Electronic Library (IEL) |
subjects | Coefficients Coils Gravimeters Gravimetric analysis High-temperature superconductors Magnetic forces Magnetic levitation Mathematical analysis Mathematical models Optimization Oxidation Penetration depth Superconducting coils Superconducting magnets Superconductivity Surface preparation Temperature control temperature dependence Temperature effects Temperature measurement Type II superconductors Vacuum chambers |
title | Analytical Calculation and Optimization of Superconducting Gravimeter Temperature Effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Calculation%20and%20Optimization%20of%20Superconducting%20Gravimeter%20Temperature%20Effect&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Huang,%20Xing&rft.date=2022-08&rft.volume=32&rft.issue=5&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2022.3168880&rft_dat=%3Cproquest_RIE%3E2665817705%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665817705&rft_id=info:pmid/&rft_ieee_id=9762049&rfr_iscdi=true |