Analytical Calculation and Optimization of Superconducting Gravimeter Temperature Effect

High-resolution superconducting gravimeters (SGs) require μK-level temperature control. Passive isolation can increase the risk of quenching the superconducting gravity sensing unit. Also, the use of a vacuum chamber for passive isolation increases complexity and complicates the operation of the ins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2022-08, Vol.32 (5), p.1-7
Hauptverfasser: Huang, Xing, Hu, Xinning, Zhang, Zili, Cui, Chunyan, Wang, Hao, Niu, Feifei, Zhang, Yuan, Wang, Luzhong, Wang, Qiuliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 32
creator Huang, Xing
Hu, Xinning
Zhang, Zili
Cui, Chunyan
Wang, Hao
Niu, Feifei
Zhang, Yuan
Wang, Luzhong
Wang, Qiuliang
description High-resolution superconducting gravimeters (SGs) require μK-level temperature control. Passive isolation can increase the risk of quenching the superconducting gravity sensing unit. Also, the use of a vacuum chamber for passive isolation increases complexity and complicates the operation of the instrument. Therefore, to investigate how to avoid using passive isolation, we developed an analytical computation model based on the Maxwell-London (ML) equations for calculating the magnetic levitation forces of the SG, taking into account the penetration depth characteristics of type II superconducting sphere. The model can be used to calculate the independent contributions of the upper and lower superconducting coils to the superconducting sphere levitation force, the magnetic gradient of the SG, and most importantly, the temperature coefficient of the SG temperature effect. Calculations show that temperature variations change the penetration depth and levitation force of the superconducting sphere and that the penetration depth determined at 4.2 K corresponds to a unique temperature coefficient, which means that the effect of the same temperature on the levitation force of the superconducting sphere is definite for a certain penetration depth. Further studies find that the temperature coefficient depends linearly on the effective penetration depth of the superconducting sphere, and the greater temperature coefficient than that of the smooth superconductor depends on the surface preparation and surface oxidation of the superconducting sphere. After discussion, it is clear that Nb coating on the surface of superconducting spheres is an effective solution to avoid passive isolation in the future.
doi_str_mv 10.1109/TASC.2022.3168880
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9762049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9762049</ieee_id><sourcerecordid>2665817705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1385-32ee8643713c0492e422ef78a1438dd46f474bb3e50e85b92280b18dd2fcb2af3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwseN6aTJLd7LGUWoVCD63gLWSzE0nZf2Z3hfrp3bLF0wzz3htmfoQ8MrpgjGYvh-V-tQAKsOAsUUrRKzJjUqoYJJPXY08lixUAvyV3XXeklAkl5Ix8LmtTnnpvTRmtTGmH0vS-qSNTF9Gu7X3lf6dB46L90GKwTV0Mtvf1V7QJ5sdX2GOIDliNmumHgNHaObT9Pblxpuzw4VLn5ON1fVi9xdvd5n213MaWcSVjDogqETxl3FKRAQoAdKkyTHBVFCJxIhV5zlFSVDLPABTN2aiAszkYx-fkedrbhuZ7wK7Xx2YI41OdhiSRiqUplaOLTS4bmq4L6HQbfGXCSTOqzwD1GaA-A9QXgGPmacp4RPz3Z2kC46H8D5GUbM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665817705</pqid></control><display><type>article</type><title>Analytical Calculation and Optimization of Superconducting Gravimeter Temperature Effect</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Xing ; Hu, Xinning ; Zhang, Zili ; Cui, Chunyan ; Wang, Hao ; Niu, Feifei ; Zhang, Yuan ; Wang, Luzhong ; Wang, Qiuliang</creator><creatorcontrib>Huang, Xing ; Hu, Xinning ; Zhang, Zili ; Cui, Chunyan ; Wang, Hao ; Niu, Feifei ; Zhang, Yuan ; Wang, Luzhong ; Wang, Qiuliang</creatorcontrib><description>High-resolution superconducting gravimeters (SGs) require μK-level temperature control. Passive isolation can increase the risk of quenching the superconducting gravity sensing unit. Also, the use of a vacuum chamber for passive isolation increases complexity and complicates the operation of the instrument. Therefore, to investigate how to avoid using passive isolation, we developed an analytical computation model based on the Maxwell-London (ML) equations for calculating the magnetic levitation forces of the SG, taking into account the penetration depth characteristics of type II superconducting sphere. The model can be used to calculate the independent contributions of the upper and lower superconducting coils to the superconducting sphere levitation force, the magnetic gradient of the SG, and most importantly, the temperature coefficient of the SG temperature effect. Calculations show that temperature variations change the penetration depth and levitation force of the superconducting sphere and that the penetration depth determined at 4.2 K corresponds to a unique temperature coefficient, which means that the effect of the same temperature on the levitation force of the superconducting sphere is definite for a certain penetration depth. Further studies find that the temperature coefficient depends linearly on the effective penetration depth of the superconducting sphere, and the greater temperature coefficient than that of the smooth superconductor depends on the surface preparation and surface oxidation of the superconducting sphere. After discussion, it is clear that Nb coating on the surface of superconducting spheres is an effective solution to avoid passive isolation in the future.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2022.3168880</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coefficients ; Coils ; Gravimeters ; Gravimetric analysis ; High-temperature superconductors ; Magnetic forces ; Magnetic levitation ; Mathematical analysis ; Mathematical models ; Optimization ; Oxidation ; Penetration depth ; Superconducting coils ; Superconducting magnets ; Superconductivity ; Surface preparation ; Temperature control ; temperature dependence ; Temperature effects ; Temperature measurement ; Type II superconductors ; Vacuum chambers</subject><ispartof>IEEE transactions on applied superconductivity, 2022-08, Vol.32 (5), p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1385-32ee8643713c0492e422ef78a1438dd46f474bb3e50e85b92280b18dd2fcb2af3</citedby><cites>FETCH-LOGICAL-c1385-32ee8643713c0492e422ef78a1438dd46f474bb3e50e85b92280b18dd2fcb2af3</cites><orcidid>0000-0001-6914-625X ; 0000-0002-5912-4003 ; 0000-0002-3065-211X ; 0000-0002-6322-6934 ; 0000-0002-2569-5748 ; 0000-0003-1101-9674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9762049$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9762049$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Xing</creatorcontrib><creatorcontrib>Hu, Xinning</creatorcontrib><creatorcontrib>Zhang, Zili</creatorcontrib><creatorcontrib>Cui, Chunyan</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Niu, Feifei</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Wang, Luzhong</creatorcontrib><creatorcontrib>Wang, Qiuliang</creatorcontrib><title>Analytical Calculation and Optimization of Superconducting Gravimeter Temperature Effect</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>High-resolution superconducting gravimeters (SGs) require μK-level temperature control. Passive isolation can increase the risk of quenching the superconducting gravity sensing unit. Also, the use of a vacuum chamber for passive isolation increases complexity and complicates the operation of the instrument. Therefore, to investigate how to avoid using passive isolation, we developed an analytical computation model based on the Maxwell-London (ML) equations for calculating the magnetic levitation forces of the SG, taking into account the penetration depth characteristics of type II superconducting sphere. The model can be used to calculate the independent contributions of the upper and lower superconducting coils to the superconducting sphere levitation force, the magnetic gradient of the SG, and most importantly, the temperature coefficient of the SG temperature effect. Calculations show that temperature variations change the penetration depth and levitation force of the superconducting sphere and that the penetration depth determined at 4.2 K corresponds to a unique temperature coefficient, which means that the effect of the same temperature on the levitation force of the superconducting sphere is definite for a certain penetration depth. Further studies find that the temperature coefficient depends linearly on the effective penetration depth of the superconducting sphere, and the greater temperature coefficient than that of the smooth superconductor depends on the surface preparation and surface oxidation of the superconducting sphere. After discussion, it is clear that Nb coating on the surface of superconducting spheres is an effective solution to avoid passive isolation in the future.</description><subject>Coefficients</subject><subject>Coils</subject><subject>Gravimeters</subject><subject>Gravimetric analysis</subject><subject>High-temperature superconductors</subject><subject>Magnetic forces</subject><subject>Magnetic levitation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Penetration depth</subject><subject>Superconducting coils</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>Surface preparation</subject><subject>Temperature control</subject><subject>temperature dependence</subject><subject>Temperature effects</subject><subject>Temperature measurement</subject><subject>Type II superconductors</subject><subject>Vacuum chambers</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwseN6aTJLd7LGUWoVCD63gLWSzE0nZf2Z3hfrp3bLF0wzz3htmfoQ8MrpgjGYvh-V-tQAKsOAsUUrRKzJjUqoYJJPXY08lixUAvyV3XXeklAkl5Ix8LmtTnnpvTRmtTGmH0vS-qSNTF9Gu7X3lf6dB46L90GKwTV0Mtvf1V7QJ5sdX2GOIDliNmumHgNHaObT9Pblxpuzw4VLn5ON1fVi9xdvd5n213MaWcSVjDogqETxl3FKRAQoAdKkyTHBVFCJxIhV5zlFSVDLPABTN2aiAszkYx-fkedrbhuZ7wK7Xx2YI41OdhiSRiqUplaOLTS4bmq4L6HQbfGXCSTOqzwD1GaA-A9QXgGPmacp4RPz3Z2kC46H8D5GUbM8</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Huang, Xing</creator><creator>Hu, Xinning</creator><creator>Zhang, Zili</creator><creator>Cui, Chunyan</creator><creator>Wang, Hao</creator><creator>Niu, Feifei</creator><creator>Zhang, Yuan</creator><creator>Wang, Luzhong</creator><creator>Wang, Qiuliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6914-625X</orcidid><orcidid>https://orcid.org/0000-0002-5912-4003</orcidid><orcidid>https://orcid.org/0000-0002-3065-211X</orcidid><orcidid>https://orcid.org/0000-0002-6322-6934</orcidid><orcidid>https://orcid.org/0000-0002-2569-5748</orcidid><orcidid>https://orcid.org/0000-0003-1101-9674</orcidid></search><sort><creationdate>202208</creationdate><title>Analytical Calculation and Optimization of Superconducting Gravimeter Temperature Effect</title><author>Huang, Xing ; Hu, Xinning ; Zhang, Zili ; Cui, Chunyan ; Wang, Hao ; Niu, Feifei ; Zhang, Yuan ; Wang, Luzhong ; Wang, Qiuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1385-32ee8643713c0492e422ef78a1438dd46f474bb3e50e85b92280b18dd2fcb2af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coefficients</topic><topic>Coils</topic><topic>Gravimeters</topic><topic>Gravimetric analysis</topic><topic>High-temperature superconductors</topic><topic>Magnetic forces</topic><topic>Magnetic levitation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Penetration depth</topic><topic>Superconducting coils</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>Surface preparation</topic><topic>Temperature control</topic><topic>temperature dependence</topic><topic>Temperature effects</topic><topic>Temperature measurement</topic><topic>Type II superconductors</topic><topic>Vacuum chambers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xing</creatorcontrib><creatorcontrib>Hu, Xinning</creatorcontrib><creatorcontrib>Zhang, Zili</creatorcontrib><creatorcontrib>Cui, Chunyan</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Niu, Feifei</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Wang, Luzhong</creatorcontrib><creatorcontrib>Wang, Qiuliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Xing</au><au>Hu, Xinning</au><au>Zhang, Zili</au><au>Cui, Chunyan</au><au>Wang, Hao</au><au>Niu, Feifei</au><au>Zhang, Yuan</au><au>Wang, Luzhong</au><au>Wang, Qiuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Calculation and Optimization of Superconducting Gravimeter Temperature Effect</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2022-08</date><risdate>2022</risdate><volume>32</volume><issue>5</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>High-resolution superconducting gravimeters (SGs) require μK-level temperature control. Passive isolation can increase the risk of quenching the superconducting gravity sensing unit. Also, the use of a vacuum chamber for passive isolation increases complexity and complicates the operation of the instrument. Therefore, to investigate how to avoid using passive isolation, we developed an analytical computation model based on the Maxwell-London (ML) equations for calculating the magnetic levitation forces of the SG, taking into account the penetration depth characteristics of type II superconducting sphere. The model can be used to calculate the independent contributions of the upper and lower superconducting coils to the superconducting sphere levitation force, the magnetic gradient of the SG, and most importantly, the temperature coefficient of the SG temperature effect. Calculations show that temperature variations change the penetration depth and levitation force of the superconducting sphere and that the penetration depth determined at 4.2 K corresponds to a unique temperature coefficient, which means that the effect of the same temperature on the levitation force of the superconducting sphere is definite for a certain penetration depth. Further studies find that the temperature coefficient depends linearly on the effective penetration depth of the superconducting sphere, and the greater temperature coefficient than that of the smooth superconductor depends on the surface preparation and surface oxidation of the superconducting sphere. After discussion, it is clear that Nb coating on the surface of superconducting spheres is an effective solution to avoid passive isolation in the future.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2022.3168880</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6914-625X</orcidid><orcidid>https://orcid.org/0000-0002-5912-4003</orcidid><orcidid>https://orcid.org/0000-0002-3065-211X</orcidid><orcidid>https://orcid.org/0000-0002-6322-6934</orcidid><orcidid>https://orcid.org/0000-0002-2569-5748</orcidid><orcidid>https://orcid.org/0000-0003-1101-9674</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2022-08, Vol.32 (5), p.1-7
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_9762049
source IEEE Electronic Library (IEL)
subjects Coefficients
Coils
Gravimeters
Gravimetric analysis
High-temperature superconductors
Magnetic forces
Magnetic levitation
Mathematical analysis
Mathematical models
Optimization
Oxidation
Penetration depth
Superconducting coils
Superconducting magnets
Superconductivity
Surface preparation
Temperature control
temperature dependence
Temperature effects
Temperature measurement
Type II superconductors
Vacuum chambers
title Analytical Calculation and Optimization of Superconducting Gravimeter Temperature Effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Calculation%20and%20Optimization%20of%20Superconducting%20Gravimeter%20Temperature%20Effect&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Huang,%20Xing&rft.date=2022-08&rft.volume=32&rft.issue=5&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2022.3168880&rft_dat=%3Cproquest_RIE%3E2665817705%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665817705&rft_id=info:pmid/&rft_ieee_id=9762049&rfr_iscdi=true