Toward Ant-Sized Moving Object Localization Using Deep Learning in FMCW Radar: A Pilot Study
We propose a deep learning-based approach to localizing a small moving object with a single millimeter-wave frequency-modulated continuous-wave (FMCW) radar. The main challenge that foils conventional localization techniques, such as 3-D fast Fourier transform (3-D-FFT), Pisarenko method, multiple s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-10 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Kumchaiseemak, Nakorn Chatnuntawech, Itthi Teerapittayanon, Surat Kotchapansompote, Palakon Kaewlee, Thitikorn Piriyajitakonkij, Maytus Wilaiprasitporn, Theerawit Suwajanakorn, Supasorn |
description | We propose a deep learning-based approach to localizing a small moving object with a single millimeter-wave frequency-modulated continuous-wave (FMCW) radar. The main challenge that foils conventional localization techniques, such as 3-D fast Fourier transform (3-D-FFT), Pisarenko method, multiple signal classification (MUSIC), estimation of signal parameters via rotational invariance technique (ESPRIT), Capon's method, and Burg's method, is the low signal-to-noise ratio of the reflected signal from millimeter-sized objects. Our key idea is to combine useful but noisy features from classical transforms [e.g., fast Fourier transform (FFT)] with neural networks that can refine and interpret those features into range and angle estimates by training on a large dataset of examples. Importantly, our networks were designed to be translation-equivariant, which enables accurate predictions of unseen object locations and improves the range and azimuth root mean square error (RMSE) scores by 34%-46% and 41%-60%, respectively, over state-of-the-art approaches. This pilot study establishes a new baseline for small-object tracking using FMCW and can enable tracking of small animals, such as ants inside the colony for behavior studies. Our first FMCW-small-object dataset and the source code are publicly available on https://github.com/shikuzen/RA-CNN . |
doi_str_mv | 10.1109/TGRS.2022.3169642 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9761934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9761934</ieee_id><sourcerecordid>2660160665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-872e5867f86450f0f5d97816a1c41169adeeff618de91e01a8f3fe25661ae8703</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKd_gPgS8LkzlzZp4tuYbgodk_3AFyHE9iIds5lpp7i_3pYNn47jPt877kPINbABANN3y8l8MeCM80EMUsuEn5AeCKEiJpPklPQYaBlxpfk5uajrNWOQCEh75G3pf2wo6LBqokW5x4JO_XdZfdDZ-xrzhmY-t5tyb5vSV3RVd5MHxC3N0Iaq68qKjqejVzq3hQ33dEhfyo1v6KLZFb-X5MzZTY1Xx9onq_HjcvQUZbPJ82iYRTnXcROplKNQMnVKJoI55kShUwXSQp5A-40tEJ2ToArUgAyscrFDLqQEiyplcZ_cHvZug__aYd2Ytd-Fqj1puJQMJJNStBQcqDz4ug7ozDaUnzb8GmCmk2g6iaaTaI4S28zNIVMi4j-vUwk6TuI_EuFrzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660160665</pqid></control><display><type>article</type><title>Toward Ant-Sized Moving Object Localization Using Deep Learning in FMCW Radar: A Pilot Study</title><source>IEEE Electronic Library (IEL)</source><creator>Kumchaiseemak, Nakorn ; Chatnuntawech, Itthi ; Teerapittayanon, Surat ; Kotchapansompote, Palakon ; Kaewlee, Thitikorn ; Piriyajitakonkij, Maytus ; Wilaiprasitporn, Theerawit ; Suwajanakorn, Supasorn</creator><creatorcontrib>Kumchaiseemak, Nakorn ; Chatnuntawech, Itthi ; Teerapittayanon, Surat ; Kotchapansompote, Palakon ; Kaewlee, Thitikorn ; Piriyajitakonkij, Maytus ; Wilaiprasitporn, Theerawit ; Suwajanakorn, Supasorn</creatorcontrib><description>We propose a deep learning-based approach to localizing a small moving object with a single millimeter-wave frequency-modulated continuous-wave (FMCW) radar. The main challenge that foils conventional localization techniques, such as 3-D fast Fourier transform (3-D-FFT), Pisarenko method, multiple signal classification (MUSIC), estimation of signal parameters via rotational invariance technique (ESPRIT), Capon's method, and Burg's method, is the low signal-to-noise ratio of the reflected signal from millimeter-sized objects. Our key idea is to combine useful but noisy features from classical transforms [e.g., fast Fourier transform (FFT)] with neural networks that can refine and interpret those features into range and angle estimates by training on a large dataset of examples. Importantly, our networks were designed to be translation-equivariant, which enables accurate predictions of unseen object locations and improves the range and azimuth root mean square error (RMSE) scores by 34%-46% and 41%-60%, respectively, over state-of-the-art approaches. This pilot study establishes a new baseline for small-object tracking using FMCW and can enable tracking of small animals, such as ants inside the colony for behavior studies. Our first FMCW-small-object dataset and the source code are publicly available on https://github.com/shikuzen/RA-CNN .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3169642</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Animal learning ; Azimuth ; Chirp ; Colonies ; Continuous radiation ; Datasets ; Deep learning ; Deep learning (DL) ; Fast Fourier transformations ; Foils ; Fourier transforms ; Frequency dependence ; frequency-modulated continuous-wave (FMCW) radar ; Localization ; Location awareness ; Machine learning ; Methods ; Millimeter waves ; millimeter-wave (mmWave) radar ; Neural networks ; object localization ; Object motion ; Radar ; Radar antennas ; Radar detection ; Radar signal processing ; Root-mean-square errors ; Signal classification ; Signal to noise ratio ; Source code ; Tracking ; Wave frequency</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-872e5867f86450f0f5d97816a1c41169adeeff618de91e01a8f3fe25661ae8703</citedby><cites>FETCH-LOGICAL-c293t-872e5867f86450f0f5d97816a1c41169adeeff618de91e01a8f3fe25661ae8703</cites><orcidid>0000-0003-4941-4354 ; 0000-0002-7610-8953 ; 0000-0002-4049-5648 ; 0000-0002-1396-0356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9761934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9761934$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kumchaiseemak, Nakorn</creatorcontrib><creatorcontrib>Chatnuntawech, Itthi</creatorcontrib><creatorcontrib>Teerapittayanon, Surat</creatorcontrib><creatorcontrib>Kotchapansompote, Palakon</creatorcontrib><creatorcontrib>Kaewlee, Thitikorn</creatorcontrib><creatorcontrib>Piriyajitakonkij, Maytus</creatorcontrib><creatorcontrib>Wilaiprasitporn, Theerawit</creatorcontrib><creatorcontrib>Suwajanakorn, Supasorn</creatorcontrib><title>Toward Ant-Sized Moving Object Localization Using Deep Learning in FMCW Radar: A Pilot Study</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>We propose a deep learning-based approach to localizing a small moving object with a single millimeter-wave frequency-modulated continuous-wave (FMCW) radar. The main challenge that foils conventional localization techniques, such as 3-D fast Fourier transform (3-D-FFT), Pisarenko method, multiple signal classification (MUSIC), estimation of signal parameters via rotational invariance technique (ESPRIT), Capon's method, and Burg's method, is the low signal-to-noise ratio of the reflected signal from millimeter-sized objects. Our key idea is to combine useful but noisy features from classical transforms [e.g., fast Fourier transform (FFT)] with neural networks that can refine and interpret those features into range and angle estimates by training on a large dataset of examples. Importantly, our networks were designed to be translation-equivariant, which enables accurate predictions of unseen object locations and improves the range and azimuth root mean square error (RMSE) scores by 34%-46% and 41%-60%, respectively, over state-of-the-art approaches. This pilot study establishes a new baseline for small-object tracking using FMCW and can enable tracking of small animals, such as ants inside the colony for behavior studies. Our first FMCW-small-object dataset and the source code are publicly available on https://github.com/shikuzen/RA-CNN .</description><subject>Animal learning</subject><subject>Azimuth</subject><subject>Chirp</subject><subject>Colonies</subject><subject>Continuous radiation</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Deep learning (DL)</subject><subject>Fast Fourier transformations</subject><subject>Foils</subject><subject>Fourier transforms</subject><subject>Frequency dependence</subject><subject>frequency-modulated continuous-wave (FMCW) radar</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Millimeter waves</subject><subject>millimeter-wave (mmWave) radar</subject><subject>Neural networks</subject><subject>object localization</subject><subject>Object motion</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Radar detection</subject><subject>Radar signal processing</subject><subject>Root-mean-square errors</subject><subject>Signal classification</subject><subject>Signal to noise ratio</subject><subject>Source code</subject><subject>Tracking</subject><subject>Wave frequency</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKd_gPgS8LkzlzZp4tuYbgodk_3AFyHE9iIds5lpp7i_3pYNn47jPt877kPINbABANN3y8l8MeCM80EMUsuEn5AeCKEiJpPklPQYaBlxpfk5uajrNWOQCEh75G3pf2wo6LBqokW5x4JO_XdZfdDZ-xrzhmY-t5tyb5vSV3RVd5MHxC3N0Iaq68qKjqejVzq3hQ33dEhfyo1v6KLZFb-X5MzZTY1Xx9onq_HjcvQUZbPJ82iYRTnXcROplKNQMnVKJoI55kShUwXSQp5A-40tEJ2ToArUgAyscrFDLqQEiyplcZ_cHvZug__aYd2Ytd-Fqj1puJQMJJNStBQcqDz4ug7ozDaUnzb8GmCmk2g6iaaTaI4S28zNIVMi4j-vUwk6TuI_EuFrzg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Kumchaiseemak, Nakorn</creator><creator>Chatnuntawech, Itthi</creator><creator>Teerapittayanon, Surat</creator><creator>Kotchapansompote, Palakon</creator><creator>Kaewlee, Thitikorn</creator><creator>Piriyajitakonkij, Maytus</creator><creator>Wilaiprasitporn, Theerawit</creator><creator>Suwajanakorn, Supasorn</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4941-4354</orcidid><orcidid>https://orcid.org/0000-0002-7610-8953</orcidid><orcidid>https://orcid.org/0000-0002-4049-5648</orcidid><orcidid>https://orcid.org/0000-0002-1396-0356</orcidid></search><sort><creationdate>2022</creationdate><title>Toward Ant-Sized Moving Object Localization Using Deep Learning in FMCW Radar: A Pilot Study</title><author>Kumchaiseemak, Nakorn ; Chatnuntawech, Itthi ; Teerapittayanon, Surat ; Kotchapansompote, Palakon ; Kaewlee, Thitikorn ; Piriyajitakonkij, Maytus ; Wilaiprasitporn, Theerawit ; Suwajanakorn, Supasorn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-872e5867f86450f0f5d97816a1c41169adeeff618de91e01a8f3fe25661ae8703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal learning</topic><topic>Azimuth</topic><topic>Chirp</topic><topic>Colonies</topic><topic>Continuous radiation</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Deep learning (DL)</topic><topic>Fast Fourier transformations</topic><topic>Foils</topic><topic>Fourier transforms</topic><topic>Frequency dependence</topic><topic>frequency-modulated continuous-wave (FMCW) radar</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Millimeter waves</topic><topic>millimeter-wave (mmWave) radar</topic><topic>Neural networks</topic><topic>object localization</topic><topic>Object motion</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Radar detection</topic><topic>Radar signal processing</topic><topic>Root-mean-square errors</topic><topic>Signal classification</topic><topic>Signal to noise ratio</topic><topic>Source code</topic><topic>Tracking</topic><topic>Wave frequency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumchaiseemak, Nakorn</creatorcontrib><creatorcontrib>Chatnuntawech, Itthi</creatorcontrib><creatorcontrib>Teerapittayanon, Surat</creatorcontrib><creatorcontrib>Kotchapansompote, Palakon</creatorcontrib><creatorcontrib>Kaewlee, Thitikorn</creatorcontrib><creatorcontrib>Piriyajitakonkij, Maytus</creatorcontrib><creatorcontrib>Wilaiprasitporn, Theerawit</creatorcontrib><creatorcontrib>Suwajanakorn, Supasorn</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kumchaiseemak, Nakorn</au><au>Chatnuntawech, Itthi</au><au>Teerapittayanon, Surat</au><au>Kotchapansompote, Palakon</au><au>Kaewlee, Thitikorn</au><au>Piriyajitakonkij, Maytus</au><au>Wilaiprasitporn, Theerawit</au><au>Suwajanakorn, Supasorn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Ant-Sized Moving Object Localization Using Deep Learning in FMCW Radar: A Pilot Study</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>We propose a deep learning-based approach to localizing a small moving object with a single millimeter-wave frequency-modulated continuous-wave (FMCW) radar. The main challenge that foils conventional localization techniques, such as 3-D fast Fourier transform (3-D-FFT), Pisarenko method, multiple signal classification (MUSIC), estimation of signal parameters via rotational invariance technique (ESPRIT), Capon's method, and Burg's method, is the low signal-to-noise ratio of the reflected signal from millimeter-sized objects. Our key idea is to combine useful but noisy features from classical transforms [e.g., fast Fourier transform (FFT)] with neural networks that can refine and interpret those features into range and angle estimates by training on a large dataset of examples. Importantly, our networks were designed to be translation-equivariant, which enables accurate predictions of unseen object locations and improves the range and azimuth root mean square error (RMSE) scores by 34%-46% and 41%-60%, respectively, over state-of-the-art approaches. This pilot study establishes a new baseline for small-object tracking using FMCW and can enable tracking of small animals, such as ants inside the colony for behavior studies. Our first FMCW-small-object dataset and the source code are publicly available on https://github.com/shikuzen/RA-CNN .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3169642</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4941-4354</orcidid><orcidid>https://orcid.org/0000-0002-7610-8953</orcidid><orcidid>https://orcid.org/0000-0002-4049-5648</orcidid><orcidid>https://orcid.org/0000-0002-1396-0356</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-10 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_9761934 |
source | IEEE Electronic Library (IEL) |
subjects | Animal learning Azimuth Chirp Colonies Continuous radiation Datasets Deep learning Deep learning (DL) Fast Fourier transformations Foils Fourier transforms Frequency dependence frequency-modulated continuous-wave (FMCW) radar Localization Location awareness Machine learning Methods Millimeter waves millimeter-wave (mmWave) radar Neural networks object localization Object motion Radar Radar antennas Radar detection Radar signal processing Root-mean-square errors Signal classification Signal to noise ratio Source code Tracking Wave frequency |
title | Toward Ant-Sized Moving Object Localization Using Deep Learning in FMCW Radar: A Pilot Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A51%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Ant-Sized%20Moving%20Object%20Localization%20Using%20Deep%20Learning%20in%20FMCW%20Radar:%20A%20Pilot%20Study&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Kumchaiseemak,%20Nakorn&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3169642&rft_dat=%3Cproquest_RIE%3E2660160665%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660160665&rft_id=info:pmid/&rft_ieee_id=9761934&rfr_iscdi=true |