Intelligent Terminal Sliding Mode Control of Active Power Filters by Self-Evolving Emotional Neural Network

In this article, a control system based on evolutionary emotional neural network is proposed for active power filters (APFs) to improve power quality. First, the dynamic model of the APF containing external disturbances and component parameter perturbations is introduced. The global fast terminal sl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2023-04, Vol.19 (4), p.6138-6149
Hauptverfasser: Chu, Yundi, Fu, Shili, Hou, Shixi, Fei, Juntao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6149
container_issue 4
container_start_page 6138
container_title IEEE transactions on industrial informatics
container_volume 19
creator Chu, Yundi
Fu, Shili
Hou, Shixi
Fei, Juntao
description In this article, a control system based on evolutionary emotional neural network is proposed for active power filters (APFs) to improve power quality. First, the dynamic model of the APF containing external disturbances and component parameter perturbations is introduced. The global fast terminal sliding mode (GFTSM) control method is proposed for the APF and its finite-time convergence and global robustness are demonstrated. In addition, an emotional neural network based on Hermite orthogonal polynomials as the activation function is constructed and combined with an evolutionary mechanism to form a self-evolving emotional neural network (SEENN). Then, a model-free control system based on SEENN is designed to address the model dependence of the GFTSM controller design. The parameter update law is designed under the Lyapunov framework to ensure stability. Finally, the results of prototype experiments show the excellent performance of the proposed control algorithm.
doi_str_mv 10.1109/TII.2022.3168654
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9760094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9760094</ieee_id><sourcerecordid>2790138413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-80bab5f77acbb645b43c132bdcbee6d3c218c5aaf5c24a899192ed76ae7ff78e3</originalsourceid><addsrcrecordid>eNo9kEtrAjEUhYfSQq3tvtBNoOuxecwrSxFtB-wDtOshydxINE5sJir--85U6ercxfkOly-KHgkeEYL5y7IsRxRTOmIkK7I0uYoGhCckxjjF192dpiRmFLPb6K5t1xizHDM-iDZlE8Bas4ImoCX4rWmERQtratOs0LurAU1cE7yzyGk0VsEcAH25I3g0MzaAb5E8oQVYHU8Pzh56arp1wbh-5wP2_i_C0fnNfXSjhW3h4ZLD6Hs2XU7e4vnnazkZz2NFOQlxgaWQqc5zoaTMklQmTBFGZa0kQFYzRUmhUiF0qmgiCs4Jp1DnmYBc67wANoyez7s773720IZq7fa--6etaM4xYUVCWNfC55byrm096GrnzVb4U0Vw1SutOqVVr7S6KO2QpzNiAOC_zvMMY56wX1OKc8c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790138413</pqid></control><display><type>article</type><title>Intelligent Terminal Sliding Mode Control of Active Power Filters by Self-Evolving Emotional Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Chu, Yundi ; Fu, Shili ; Hou, Shixi ; Fei, Juntao</creator><creatorcontrib>Chu, Yundi ; Fu, Shili ; Hou, Shixi ; Fei, Juntao</creatorcontrib><description>In this article, a control system based on evolutionary emotional neural network is proposed for active power filters (APFs) to improve power quality. First, the dynamic model of the APF containing external disturbances and component parameter perturbations is introduced. The global fast terminal sliding mode (GFTSM) control method is proposed for the APF and its finite-time convergence and global robustness are demonstrated. In addition, an emotional neural network based on Hermite orthogonal polynomials as the activation function is constructed and combined with an evolutionary mechanism to form a self-evolving emotional neural network (SEENN). Then, a model-free control system based on SEENN is designed to address the model dependence of the GFTSM controller design. The parameter update law is designed under the Lyapunov framework to ensure stability. Finally, the results of prototype experiments show the excellent performance of the proposed control algorithm.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2022.3168654</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active control ; Active filters ; Active power filter (APF) ; Algorithms ; Biological neural networks ; Control methods ; Control systems design ; Control theory ; Convergence ; Design parameters ; Dynamic models ; Evolution ; global fast terminal sliding mode (GFTSM) ; hermite orthogonal polynomials activation function ; Hermite polynomials ; Informatics ; Neural networks ; Perturbation ; self-evolving emotional neural network (SEENN) ; Sliding mode control ; Stability analysis ; Uncertainty</subject><ispartof>IEEE transactions on industrial informatics, 2023-04, Vol.19 (4), p.6138-6149</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-80bab5f77acbb645b43c132bdcbee6d3c218c5aaf5c24a899192ed76ae7ff78e3</citedby><cites>FETCH-LOGICAL-c291t-80bab5f77acbb645b43c132bdcbee6d3c218c5aaf5c24a899192ed76ae7ff78e3</cites><orcidid>0000-0002-9179-9836 ; 0000-0002-9544-9120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9760094$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9760094$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chu, Yundi</creatorcontrib><creatorcontrib>Fu, Shili</creatorcontrib><creatorcontrib>Hou, Shixi</creatorcontrib><creatorcontrib>Fei, Juntao</creatorcontrib><title>Intelligent Terminal Sliding Mode Control of Active Power Filters by Self-Evolving Emotional Neural Network</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In this article, a control system based on evolutionary emotional neural network is proposed for active power filters (APFs) to improve power quality. First, the dynamic model of the APF containing external disturbances and component parameter perturbations is introduced. The global fast terminal sliding mode (GFTSM) control method is proposed for the APF and its finite-time convergence and global robustness are demonstrated. In addition, an emotional neural network based on Hermite orthogonal polynomials as the activation function is constructed and combined with an evolutionary mechanism to form a self-evolving emotional neural network (SEENN). Then, a model-free control system based on SEENN is designed to address the model dependence of the GFTSM controller design. The parameter update law is designed under the Lyapunov framework to ensure stability. Finally, the results of prototype experiments show the excellent performance of the proposed control algorithm.</description><subject>Active control</subject><subject>Active filters</subject><subject>Active power filter (APF)</subject><subject>Algorithms</subject><subject>Biological neural networks</subject><subject>Control methods</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Convergence</subject><subject>Design parameters</subject><subject>Dynamic models</subject><subject>Evolution</subject><subject>global fast terminal sliding mode (GFTSM)</subject><subject>hermite orthogonal polynomials activation function</subject><subject>Hermite polynomials</subject><subject>Informatics</subject><subject>Neural networks</subject><subject>Perturbation</subject><subject>self-evolving emotional neural network (SEENN)</subject><subject>Sliding mode control</subject><subject>Stability analysis</subject><subject>Uncertainty</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtrAjEUhYfSQq3tvtBNoOuxecwrSxFtB-wDtOshydxINE5sJir--85U6ercxfkOly-KHgkeEYL5y7IsRxRTOmIkK7I0uYoGhCckxjjF192dpiRmFLPb6K5t1xizHDM-iDZlE8Bas4ImoCX4rWmERQtratOs0LurAU1cE7yzyGk0VsEcAH25I3g0MzaAb5E8oQVYHU8Pzh56arp1wbh-5wP2_i_C0fnNfXSjhW3h4ZLD6Hs2XU7e4vnnazkZz2NFOQlxgaWQqc5zoaTMklQmTBFGZa0kQFYzRUmhUiF0qmgiCs4Jp1DnmYBc67wANoyez7s773720IZq7fa--6etaM4xYUVCWNfC55byrm096GrnzVb4U0Vw1SutOqVVr7S6KO2QpzNiAOC_zvMMY56wX1OKc8c</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Chu, Yundi</creator><creator>Fu, Shili</creator><creator>Hou, Shixi</creator><creator>Fei, Juntao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9179-9836</orcidid><orcidid>https://orcid.org/0000-0002-9544-9120</orcidid></search><sort><creationdate>20230401</creationdate><title>Intelligent Terminal Sliding Mode Control of Active Power Filters by Self-Evolving Emotional Neural Network</title><author>Chu, Yundi ; Fu, Shili ; Hou, Shixi ; Fei, Juntao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-80bab5f77acbb645b43c132bdcbee6d3c218c5aaf5c24a899192ed76ae7ff78e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active control</topic><topic>Active filters</topic><topic>Active power filter (APF)</topic><topic>Algorithms</topic><topic>Biological neural networks</topic><topic>Control methods</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Convergence</topic><topic>Design parameters</topic><topic>Dynamic models</topic><topic>Evolution</topic><topic>global fast terminal sliding mode (GFTSM)</topic><topic>hermite orthogonal polynomials activation function</topic><topic>Hermite polynomials</topic><topic>Informatics</topic><topic>Neural networks</topic><topic>Perturbation</topic><topic>self-evolving emotional neural network (SEENN)</topic><topic>Sliding mode control</topic><topic>Stability analysis</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Chu, Yundi</creatorcontrib><creatorcontrib>Fu, Shili</creatorcontrib><creatorcontrib>Hou, Shixi</creatorcontrib><creatorcontrib>Fei, Juntao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chu, Yundi</au><au>Fu, Shili</au><au>Hou, Shixi</au><au>Fei, Juntao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Terminal Sliding Mode Control of Active Power Filters by Self-Evolving Emotional Neural Network</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>19</volume><issue>4</issue><spage>6138</spage><epage>6149</epage><pages>6138-6149</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In this article, a control system based on evolutionary emotional neural network is proposed for active power filters (APFs) to improve power quality. First, the dynamic model of the APF containing external disturbances and component parameter perturbations is introduced. The global fast terminal sliding mode (GFTSM) control method is proposed for the APF and its finite-time convergence and global robustness are demonstrated. In addition, an emotional neural network based on Hermite orthogonal polynomials as the activation function is constructed and combined with an evolutionary mechanism to form a self-evolving emotional neural network (SEENN). Then, a model-free control system based on SEENN is designed to address the model dependence of the GFTSM controller design. The parameter update law is designed under the Lyapunov framework to ensure stability. Finally, the results of prototype experiments show the excellent performance of the proposed control algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2022.3168654</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9179-9836</orcidid><orcidid>https://orcid.org/0000-0002-9544-9120</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2023-04, Vol.19 (4), p.6138-6149
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_9760094
source IEEE Electronic Library (IEL)
subjects Active control
Active filters
Active power filter (APF)
Algorithms
Biological neural networks
Control methods
Control systems design
Control theory
Convergence
Design parameters
Dynamic models
Evolution
global fast terminal sliding mode (GFTSM)
hermite orthogonal polynomials activation function
Hermite polynomials
Informatics
Neural networks
Perturbation
self-evolving emotional neural network (SEENN)
Sliding mode control
Stability analysis
Uncertainty
title Intelligent Terminal Sliding Mode Control of Active Power Filters by Self-Evolving Emotional Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A40%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Terminal%20Sliding%20Mode%20Control%20of%20Active%20Power%20Filters%20by%20Self-Evolving%20Emotional%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Chu,%20Yundi&rft.date=2023-04-01&rft.volume=19&rft.issue=4&rft.spage=6138&rft.epage=6149&rft.pages=6138-6149&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2022.3168654&rft_dat=%3Cproquest_RIE%3E2790138413%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2790138413&rft_id=info:pmid/&rft_ieee_id=9760094&rfr_iscdi=true