ViViD++ : Vision for Visibility Dataset
In this letter, we present a dataset capturing diverse visual data formats that target varying luminance conditions. While RGB cameras provide nourishing and intuitive information, changes in lighting conditions potentially result in catastrophic failure for robotic applications based on vision sens...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2022-07, Vol.7 (3), p.6282-6289 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6289 |
---|---|
container_issue | 3 |
container_start_page | 6282 |
container_title | IEEE robotics and automation letters |
container_volume | 7 |
creator | Lee, Alex Junho Cho, Younggun Shin, Young-sik Kim, Ayoung Myung, Hyun |
description | In this letter, we present a dataset capturing diverse visual data formats that target varying luminance conditions. While RGB cameras provide nourishing and intuitive information, changes in lighting conditions potentially result in catastrophic failure for robotic applications based on vision sensors. Approaches overcoming illumination problems have included developing more robust algorithms or other types of visual sensors, such as thermal and event cameras. Despite the alternative sensors' potential, there still are few datasets with alternative vision sensors. Thus, we provided a dataset recorded from alternative vision sensors, by handheld or mounted on a car, repeatedly in the same space but in different conditions. We aim to acquire visible information from co-aligned alternative vision sensors. Our sensor system collects data more independently from visible light intensity by measuring the amount of infrared dissipation, depth by structured reflection, and instantaneous temporal changes in luminance. We provide these measurements along with inertial sensors and ground-truth for developing robust visual SLAM under poor illumination. |
doi_str_mv | 10.1109/LRA.2022.3168335 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9760091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9760091</ieee_id><sourcerecordid>2659347477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8909c5009e63ac311eb58679d109e5976503c9055790190fbcd0b2450fef7a393</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsNTeBS8BDx5K6uxOdjfjrbR-QUAQzXVJ0g1sqU3dTQ_9792aIp7mHd578_gxds1hxjnQffE-nwkQYoZc5YjyjI0Eap2iVur8n75kkxDWAMCl0EhyxO5KV7rldJo8JKULrtsmbed_Ze02rj8ky6qvgu2v2EVbbYKdnO6YfT49fixe0uLt-XUxL9JGEO_TnIAaCUBWYdUg57aWudK0iiutJK0kYEMgpSbgBG3drKAWmYTWtrpCwjG7HXp3vvve29Cbdbf32_jSCCUJM51pHV0wuBrfheBta3befVX-YDiYIxETiZgjEXMiEiM3Q8RZa__scVEcy_EHfRNYBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659347477</pqid></control><display><type>article</type><title>ViViD++ : Vision for Visibility Dataset</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Alex Junho ; Cho, Younggun ; Shin, Young-sik ; Kim, Ayoung ; Myung, Hyun</creator><creatorcontrib>Lee, Alex Junho ; Cho, Younggun ; Shin, Young-sik ; Kim, Ayoung ; Myung, Hyun</creatorcontrib><description>In this letter, we present a dataset capturing diverse visual data formats that target varying luminance conditions. While RGB cameras provide nourishing and intuitive information, changes in lighting conditions potentially result in catastrophic failure for robotic applications based on vision sensors. Approaches overcoming illumination problems have included developing more robust algorithms or other types of visual sensors, such as thermal and event cameras. Despite the alternative sensors' potential, there still are few datasets with alternative vision sensors. Thus, we provided a dataset recorded from alternative vision sensors, by handheld or mounted on a car, repeatedly in the same space but in different conditions. We aim to acquire visible information from co-aligned alternative vision sensors. Our sensor system collects data more independently from visible light intensity by measuring the amount of infrared dissipation, depth by structured reflection, and instantaneous temporal changes in luminance. We provide these measurements along with inertial sensors and ground-truth for developing robust visual SLAM under poor illumination.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2022.3168335</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cameras ; Catastrophic events ; Data collection ; data sets for robot learning ; data sets for robotic vision ; Data sets for SLAM ; Datasets ; Illumination ; Inertial sensing devices ; Lighting ; Luminance ; Luminous intensity ; Robotics ; Robustness ; Sensor phenomena and characterization ; Sensors ; Simultaneous localization and mapping ; Thermal sensors ; Visibility ; Visualization</subject><ispartof>IEEE robotics and automation letters, 2022-07, Vol.7 (3), p.6282-6289</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8909c5009e63ac311eb58679d109e5976503c9055790190fbcd0b2450fef7a393</citedby><cites>FETCH-LOGICAL-c291t-8909c5009e63ac311eb58679d109e5976503c9055790190fbcd0b2450fef7a393</cites><orcidid>0000-0002-9653-0633 ; 0000-0003-2025-7770 ; 0000-0001-5638-7417 ; 0000-0001-9829-2408 ; 0000-0002-5799-2026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9760091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9760091$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Alex Junho</creatorcontrib><creatorcontrib>Cho, Younggun</creatorcontrib><creatorcontrib>Shin, Young-sik</creatorcontrib><creatorcontrib>Kim, Ayoung</creatorcontrib><creatorcontrib>Myung, Hyun</creatorcontrib><title>ViViD++ : Vision for Visibility Dataset</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>In this letter, we present a dataset capturing diverse visual data formats that target varying luminance conditions. While RGB cameras provide nourishing and intuitive information, changes in lighting conditions potentially result in catastrophic failure for robotic applications based on vision sensors. Approaches overcoming illumination problems have included developing more robust algorithms or other types of visual sensors, such as thermal and event cameras. Despite the alternative sensors' potential, there still are few datasets with alternative vision sensors. Thus, we provided a dataset recorded from alternative vision sensors, by handheld or mounted on a car, repeatedly in the same space but in different conditions. We aim to acquire visible information from co-aligned alternative vision sensors. Our sensor system collects data more independently from visible light intensity by measuring the amount of infrared dissipation, depth by structured reflection, and instantaneous temporal changes in luminance. We provide these measurements along with inertial sensors and ground-truth for developing robust visual SLAM under poor illumination.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Catastrophic events</subject><subject>Data collection</subject><subject>data sets for robot learning</subject><subject>data sets for robotic vision</subject><subject>Data sets for SLAM</subject><subject>Datasets</subject><subject>Illumination</subject><subject>Inertial sensing devices</subject><subject>Lighting</subject><subject>Luminance</subject><subject>Luminous intensity</subject><subject>Robotics</subject><subject>Robustness</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Simultaneous localization and mapping</subject><subject>Thermal sensors</subject><subject>Visibility</subject><subject>Visualization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxRdRsNTeBS8BDx5K6uxOdjfjrbR-QUAQzXVJ0g1sqU3dTQ_9792aIp7mHd578_gxds1hxjnQffE-nwkQYoZc5YjyjI0Eap2iVur8n75kkxDWAMCl0EhyxO5KV7rldJo8JKULrtsmbed_Ze02rj8ky6qvgu2v2EVbbYKdnO6YfT49fixe0uLt-XUxL9JGEO_TnIAaCUBWYdUg57aWudK0iiutJK0kYEMgpSbgBG3drKAWmYTWtrpCwjG7HXp3vvve29Cbdbf32_jSCCUJM51pHV0wuBrfheBta3befVX-YDiYIxETiZgjEXMiEiM3Q8RZa__scVEcy_EHfRNYBQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Lee, Alex Junho</creator><creator>Cho, Younggun</creator><creator>Shin, Young-sik</creator><creator>Kim, Ayoung</creator><creator>Myung, Hyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9653-0633</orcidid><orcidid>https://orcid.org/0000-0003-2025-7770</orcidid><orcidid>https://orcid.org/0000-0001-5638-7417</orcidid><orcidid>https://orcid.org/0000-0001-9829-2408</orcidid><orcidid>https://orcid.org/0000-0002-5799-2026</orcidid></search><sort><creationdate>20220701</creationdate><title>ViViD++ : Vision for Visibility Dataset</title><author>Lee, Alex Junho ; Cho, Younggun ; Shin, Young-sik ; Kim, Ayoung ; Myung, Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8909c5009e63ac311eb58679d109e5976503c9055790190fbcd0b2450fef7a393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Catastrophic events</topic><topic>Data collection</topic><topic>data sets for robot learning</topic><topic>data sets for robotic vision</topic><topic>Data sets for SLAM</topic><topic>Datasets</topic><topic>Illumination</topic><topic>Inertial sensing devices</topic><topic>Lighting</topic><topic>Luminance</topic><topic>Luminous intensity</topic><topic>Robotics</topic><topic>Robustness</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Simultaneous localization and mapping</topic><topic>Thermal sensors</topic><topic>Visibility</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Alex Junho</creatorcontrib><creatorcontrib>Cho, Younggun</creatorcontrib><creatorcontrib>Shin, Young-sik</creatorcontrib><creatorcontrib>Kim, Ayoung</creatorcontrib><creatorcontrib>Myung, Hyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Alex Junho</au><au>Cho, Younggun</au><au>Shin, Young-sik</au><au>Kim, Ayoung</au><au>Myung, Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ViViD++ : Vision for Visibility Dataset</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>7</volume><issue>3</issue><spage>6282</spage><epage>6289</epage><pages>6282-6289</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>In this letter, we present a dataset capturing diverse visual data formats that target varying luminance conditions. While RGB cameras provide nourishing and intuitive information, changes in lighting conditions potentially result in catastrophic failure for robotic applications based on vision sensors. Approaches overcoming illumination problems have included developing more robust algorithms or other types of visual sensors, such as thermal and event cameras. Despite the alternative sensors' potential, there still are few datasets with alternative vision sensors. Thus, we provided a dataset recorded from alternative vision sensors, by handheld or mounted on a car, repeatedly in the same space but in different conditions. We aim to acquire visible information from co-aligned alternative vision sensors. Our sensor system collects data more independently from visible light intensity by measuring the amount of infrared dissipation, depth by structured reflection, and instantaneous temporal changes in luminance. We provide these measurements along with inertial sensors and ground-truth for developing robust visual SLAM under poor illumination.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2022.3168335</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9653-0633</orcidid><orcidid>https://orcid.org/0000-0003-2025-7770</orcidid><orcidid>https://orcid.org/0000-0001-5638-7417</orcidid><orcidid>https://orcid.org/0000-0001-9829-2408</orcidid><orcidid>https://orcid.org/0000-0002-5799-2026</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2022-07, Vol.7 (3), p.6282-6289 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_9760091 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Cameras Catastrophic events Data collection data sets for robot learning data sets for robotic vision Data sets for SLAM Datasets Illumination Inertial sensing devices Lighting Luminance Luminous intensity Robotics Robustness Sensor phenomena and characterization Sensors Simultaneous localization and mapping Thermal sensors Visibility Visualization |
title | ViViD++ : Vision for Visibility Dataset |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ViViD++%20:%20Vision%20for%20Visibility%20Dataset&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Lee,%20Alex%20Junho&rft.date=2022-07-01&rft.volume=7&rft.issue=3&rft.spage=6282&rft.epage=6289&rft.pages=6282-6289&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2022.3168335&rft_dat=%3Cproquest_RIE%3E2659347477%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659347477&rft_id=info:pmid/&rft_ieee_id=9760091&rfr_iscdi=true |