Angular Margin-Mining Softmax Loss for Face Recognition
Face recognition methods have been significantly improved in recent years owing to the advances made in loss functions. Typically, loss functions are designed to enhance the separability power by concentrating on hard samples in mining-based approaches or by increasing the feature margin between dif...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.43071-43080 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43080 |
---|---|
container_issue | |
container_start_page | 43071 |
container_title | IEEE access |
container_volume | 10 |
creator | Lee, Jwajin Wang, Yooseung Cho, Sunyoung |
description | Face recognition methods have been significantly improved in recent years owing to the advances made in loss functions. Typically, loss functions are designed to enhance the separability power by concentrating on hard samples in mining-based approaches or by increasing the feature margin between different classes in margin-based approaches. However, margin-based methods lack the utilization of informative hard sample, and mining-based methods also fail to learn the latent correlations between classes. Moreover, there are no methods that simultaneously consider the effects of hard samples and feature margin through the same shape of feature angular margin. Therefore, this paper introduces the Angular Margin-Mining Softmax (AMM-Softmax) loss function, which adaptively emphasizes hard samples while also increasing the decision margins. The proposed AMM-Softmax loss function introduces a linear angular margin for hard samples, enabling the direct optimization of the geodesic distance margin and maximization of class separability. Furthermore, the proposed AMM-Softmax loss function is computationally efficient and can be easily converged by rapidly switching from the hard samples to easy samples. The results of the extensive experimental analyses conducted on popular benchmarks demonstrate the superiority of the proposed AMM-Softmax loss function over the existing state-of-the-art methods. |
doi_str_mv | 10.1109/ACCESS.2022.3168310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9759281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9759281</ieee_id><doaj_id>oai_doaj_org_article_f1cfafe9b595494db177f7b6f1db75a6</doaj_id><sourcerecordid>2656874807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-b45dea5d84219f1612b64af071e8a45b8edded51c102a9af07d4de4ed0305f1a3</originalsourceid><addsrcrecordid>eNpNUE1rwzAMDWODla2_oJfAzuksf_tYSrsVWgbrdjZObAeXNu6cFLZ_v3QpZbpIPOk9SS_LJoCmAEg9z-bzxXY7xQjjKQEuCaCbbISBq4Iwwm__1ffZuG13qA_ZQ0yMMjFr6tPepHxjUh2aYhOa0NT5NvruYL7zdWzb3MeUL03l8ndXxboJXYjNY3bnzb5140t-yD6Xi4_5a7F-e1nNZ-uiIkx2RUmZdYZZSTEoDxxwyanxSICThrJSOmudZVABwkadG5ZaR51FBDEPhjxkq0HXRrPTxxQOJv3oaIL-A2KqtUldqPZOe6i88U6VTDGqqC1BCC9K7sGWghneaz0NWscUv06u7fQunlLTn68xZ1wKKpHop8gwVaX--eT8dSsgfTZcD4brs-H6YnjPmgys4Jy7MpRgCksgv-UGe2I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656874807</pqid></control><display><type>article</type><title>Angular Margin-Mining Softmax Loss for Face Recognition</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Lee, Jwajin ; Wang, Yooseung ; Cho, Sunyoung</creator><creatorcontrib>Lee, Jwajin ; Wang, Yooseung ; Cho, Sunyoung</creatorcontrib><description>Face recognition methods have been significantly improved in recent years owing to the advances made in loss functions. Typically, loss functions are designed to enhance the separability power by concentrating on hard samples in mining-based approaches or by increasing the feature margin between different classes in margin-based approaches. However, margin-based methods lack the utilization of informative hard sample, and mining-based methods also fail to learn the latent correlations between classes. Moreover, there are no methods that simultaneously consider the effects of hard samples and feature margin through the same shape of feature angular margin. Therefore, this paper introduces the Angular Margin-Mining Softmax (AMM-Softmax) loss function, which adaptively emphasizes hard samples while also increasing the decision margins. The proposed AMM-Softmax loss function introduces a linear angular margin for hard samples, enabling the direct optimization of the geodesic distance margin and maximization of class separability. Furthermore, the proposed AMM-Softmax loss function is computationally efficient and can be easily converged by rapidly switching from the hard samples to easy samples. The results of the extensive experimental analyses conducted on popular benchmarks demonstrate the superiority of the proposed AMM-Softmax loss function over the existing state-of-the-art methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3168310</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Convolutional neural networks ; Deep convolutional neural network ; Deep learning ; Face recognition ; Feature extraction ; Measurement ; metric-learning and softmax loss function ; Optimization</subject><ispartof>IEEE access, 2022, Vol.10, p.43071-43080</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-b45dea5d84219f1612b64af071e8a45b8edded51c102a9af07d4de4ed0305f1a3</cites><orcidid>0000-0002-2341-0251 ; 0000-0002-6925-6077 ; 0000-0003-3732-866X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9759281$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Lee, Jwajin</creatorcontrib><creatorcontrib>Wang, Yooseung</creatorcontrib><creatorcontrib>Cho, Sunyoung</creatorcontrib><title>Angular Margin-Mining Softmax Loss for Face Recognition</title><title>IEEE access</title><addtitle>Access</addtitle><description>Face recognition methods have been significantly improved in recent years owing to the advances made in loss functions. Typically, loss functions are designed to enhance the separability power by concentrating on hard samples in mining-based approaches or by increasing the feature margin between different classes in margin-based approaches. However, margin-based methods lack the utilization of informative hard sample, and mining-based methods also fail to learn the latent correlations between classes. Moreover, there are no methods that simultaneously consider the effects of hard samples and feature margin through the same shape of feature angular margin. Therefore, this paper introduces the Angular Margin-Mining Softmax (AMM-Softmax) loss function, which adaptively emphasizes hard samples while also increasing the decision margins. The proposed AMM-Softmax loss function introduces a linear angular margin for hard samples, enabling the direct optimization of the geodesic distance margin and maximization of class separability. Furthermore, the proposed AMM-Softmax loss function is computationally efficient and can be easily converged by rapidly switching from the hard samples to easy samples. The results of the extensive experimental analyses conducted on popular benchmarks demonstrate the superiority of the proposed AMM-Softmax loss function over the existing state-of-the-art methods.</description><subject>Convolutional neural networks</subject><subject>Deep convolutional neural network</subject><subject>Deep learning</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Measurement</subject><subject>metric-learning and softmax loss function</subject><subject>Optimization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1rwzAMDWODla2_oJfAzuksf_tYSrsVWgbrdjZObAeXNu6cFLZ_v3QpZbpIPOk9SS_LJoCmAEg9z-bzxXY7xQjjKQEuCaCbbISBq4Iwwm__1ffZuG13qA_ZQ0yMMjFr6tPepHxjUh2aYhOa0NT5NvruYL7zdWzb3MeUL03l8ndXxboJXYjNY3bnzb5140t-yD6Xi4_5a7F-e1nNZ-uiIkx2RUmZdYZZSTEoDxxwyanxSICThrJSOmudZVABwkadG5ZaR51FBDEPhjxkq0HXRrPTxxQOJv3oaIL-A2KqtUldqPZOe6i88U6VTDGqqC1BCC9K7sGWghneaz0NWscUv06u7fQunlLTn68xZ1wKKpHop8gwVaX--eT8dSsgfTZcD4brs-H6YnjPmgys4Jy7MpRgCksgv-UGe2I</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lee, Jwajin</creator><creator>Wang, Yooseung</creator><creator>Cho, Sunyoung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2341-0251</orcidid><orcidid>https://orcid.org/0000-0002-6925-6077</orcidid><orcidid>https://orcid.org/0000-0003-3732-866X</orcidid></search><sort><creationdate>2022</creationdate><title>Angular Margin-Mining Softmax Loss for Face Recognition</title><author>Lee, Jwajin ; Wang, Yooseung ; Cho, Sunyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-b45dea5d84219f1612b64af071e8a45b8edded51c102a9af07d4de4ed0305f1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convolutional neural networks</topic><topic>Deep convolutional neural network</topic><topic>Deep learning</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Measurement</topic><topic>metric-learning and softmax loss function</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jwajin</creatorcontrib><creatorcontrib>Wang, Yooseung</creatorcontrib><creatorcontrib>Cho, Sunyoung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jwajin</au><au>Wang, Yooseung</au><au>Cho, Sunyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angular Margin-Mining Softmax Loss for Face Recognition</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>43071</spage><epage>43080</epage><pages>43071-43080</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Face recognition methods have been significantly improved in recent years owing to the advances made in loss functions. Typically, loss functions are designed to enhance the separability power by concentrating on hard samples in mining-based approaches or by increasing the feature margin between different classes in margin-based approaches. However, margin-based methods lack the utilization of informative hard sample, and mining-based methods also fail to learn the latent correlations between classes. Moreover, there are no methods that simultaneously consider the effects of hard samples and feature margin through the same shape of feature angular margin. Therefore, this paper introduces the Angular Margin-Mining Softmax (AMM-Softmax) loss function, which adaptively emphasizes hard samples while also increasing the decision margins. The proposed AMM-Softmax loss function introduces a linear angular margin for hard samples, enabling the direct optimization of the geodesic distance margin and maximization of class separability. Furthermore, the proposed AMM-Softmax loss function is computationally efficient and can be easily converged by rapidly switching from the hard samples to easy samples. The results of the extensive experimental analyses conducted on popular benchmarks demonstrate the superiority of the proposed AMM-Softmax loss function over the existing state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3168310</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2341-0251</orcidid><orcidid>https://orcid.org/0000-0002-6925-6077</orcidid><orcidid>https://orcid.org/0000-0003-3732-866X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.43071-43080 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9759281 |
source | DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | Convolutional neural networks Deep convolutional neural network Deep learning Face recognition Feature extraction Measurement metric-learning and softmax loss function Optimization |
title | Angular Margin-Mining Softmax Loss for Face Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angular%20Margin-Mining%20Softmax%20Loss%20for%20Face%20Recognition&rft.jtitle=IEEE%20access&rft.au=Lee,%20Jwajin&rft.date=2022&rft.volume=10&rft.spage=43071&rft.epage=43080&rft.pages=43071-43080&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3168310&rft_dat=%3Cproquest_ieee_%3E2656874807%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656874807&rft_id=info:pmid/&rft_ieee_id=9759281&rft_doaj_id=oai_doaj_org_article_f1cfafe9b595494db177f7b6f1db75a6&rfr_iscdi=true |