Angular Margin-Mining Softmax Loss for Face Recognition

Face recognition methods have been significantly improved in recent years owing to the advances made in loss functions. Typically, loss functions are designed to enhance the separability power by concentrating on hard samples in mining-based approaches or by increasing the feature margin between dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.43071-43080
Hauptverfasser: Lee, Jwajin, Wang, Yooseung, Cho, Sunyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43080
container_issue
container_start_page 43071
container_title IEEE access
container_volume 10
creator Lee, Jwajin
Wang, Yooseung
Cho, Sunyoung
description Face recognition methods have been significantly improved in recent years owing to the advances made in loss functions. Typically, loss functions are designed to enhance the separability power by concentrating on hard samples in mining-based approaches or by increasing the feature margin between different classes in margin-based approaches. However, margin-based methods lack the utilization of informative hard sample, and mining-based methods also fail to learn the latent correlations between classes. Moreover, there are no methods that simultaneously consider the effects of hard samples and feature margin through the same shape of feature angular margin. Therefore, this paper introduces the Angular Margin-Mining Softmax (AMM-Softmax) loss function, which adaptively emphasizes hard samples while also increasing the decision margins. The proposed AMM-Softmax loss function introduces a linear angular margin for hard samples, enabling the direct optimization of the geodesic distance margin and maximization of class separability. Furthermore, the proposed AMM-Softmax loss function is computationally efficient and can be easily converged by rapidly switching from the hard samples to easy samples. The results of the extensive experimental analyses conducted on popular benchmarks demonstrate the superiority of the proposed AMM-Softmax loss function over the existing state-of-the-art methods.
doi_str_mv 10.1109/ACCESS.2022.3168310
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9759281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9759281</ieee_id><doaj_id>oai_doaj_org_article_f1cfafe9b595494db177f7b6f1db75a6</doaj_id><sourcerecordid>2656874807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-b45dea5d84219f1612b64af071e8a45b8edded51c102a9af07d4de4ed0305f1a3</originalsourceid><addsrcrecordid>eNpNUE1rwzAMDWODla2_oJfAzuksf_tYSrsVWgbrdjZObAeXNu6cFLZ_v3QpZbpIPOk9SS_LJoCmAEg9z-bzxXY7xQjjKQEuCaCbbISBq4Iwwm__1ffZuG13qA_ZQ0yMMjFr6tPepHxjUh2aYhOa0NT5NvruYL7zdWzb3MeUL03l8ndXxboJXYjNY3bnzb5140t-yD6Xi4_5a7F-e1nNZ-uiIkx2RUmZdYZZSTEoDxxwyanxSICThrJSOmudZVABwkadG5ZaR51FBDEPhjxkq0HXRrPTxxQOJv3oaIL-A2KqtUldqPZOe6i88U6VTDGqqC1BCC9K7sGWghneaz0NWscUv06u7fQunlLTn68xZ1wKKpHop8gwVaX--eT8dSsgfTZcD4brs-H6YnjPmgys4Jy7MpRgCksgv-UGe2I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656874807</pqid></control><display><type>article</type><title>Angular Margin-Mining Softmax Loss for Face Recognition</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Lee, Jwajin ; Wang, Yooseung ; Cho, Sunyoung</creator><creatorcontrib>Lee, Jwajin ; Wang, Yooseung ; Cho, Sunyoung</creatorcontrib><description>Face recognition methods have been significantly improved in recent years owing to the advances made in loss functions. Typically, loss functions are designed to enhance the separability power by concentrating on hard samples in mining-based approaches or by increasing the feature margin between different classes in margin-based approaches. However, margin-based methods lack the utilization of informative hard sample, and mining-based methods also fail to learn the latent correlations between classes. Moreover, there are no methods that simultaneously consider the effects of hard samples and feature margin through the same shape of feature angular margin. Therefore, this paper introduces the Angular Margin-Mining Softmax (AMM-Softmax) loss function, which adaptively emphasizes hard samples while also increasing the decision margins. The proposed AMM-Softmax loss function introduces a linear angular margin for hard samples, enabling the direct optimization of the geodesic distance margin and maximization of class separability. Furthermore, the proposed AMM-Softmax loss function is computationally efficient and can be easily converged by rapidly switching from the hard samples to easy samples. The results of the extensive experimental analyses conducted on popular benchmarks demonstrate the superiority of the proposed AMM-Softmax loss function over the existing state-of-the-art methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3168310</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Convolutional neural networks ; Deep convolutional neural network ; Deep learning ; Face recognition ; Feature extraction ; Measurement ; metric-learning and softmax loss function ; Optimization</subject><ispartof>IEEE access, 2022, Vol.10, p.43071-43080</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-b45dea5d84219f1612b64af071e8a45b8edded51c102a9af07d4de4ed0305f1a3</cites><orcidid>0000-0002-2341-0251 ; 0000-0002-6925-6077 ; 0000-0003-3732-866X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9759281$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Lee, Jwajin</creatorcontrib><creatorcontrib>Wang, Yooseung</creatorcontrib><creatorcontrib>Cho, Sunyoung</creatorcontrib><title>Angular Margin-Mining Softmax Loss for Face Recognition</title><title>IEEE access</title><addtitle>Access</addtitle><description>Face recognition methods have been significantly improved in recent years owing to the advances made in loss functions. Typically, loss functions are designed to enhance the separability power by concentrating on hard samples in mining-based approaches or by increasing the feature margin between different classes in margin-based approaches. However, margin-based methods lack the utilization of informative hard sample, and mining-based methods also fail to learn the latent correlations between classes. Moreover, there are no methods that simultaneously consider the effects of hard samples and feature margin through the same shape of feature angular margin. Therefore, this paper introduces the Angular Margin-Mining Softmax (AMM-Softmax) loss function, which adaptively emphasizes hard samples while also increasing the decision margins. The proposed AMM-Softmax loss function introduces a linear angular margin for hard samples, enabling the direct optimization of the geodesic distance margin and maximization of class separability. Furthermore, the proposed AMM-Softmax loss function is computationally efficient and can be easily converged by rapidly switching from the hard samples to easy samples. The results of the extensive experimental analyses conducted on popular benchmarks demonstrate the superiority of the proposed AMM-Softmax loss function over the existing state-of-the-art methods.</description><subject>Convolutional neural networks</subject><subject>Deep convolutional neural network</subject><subject>Deep learning</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Measurement</subject><subject>metric-learning and softmax loss function</subject><subject>Optimization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1rwzAMDWODla2_oJfAzuksf_tYSrsVWgbrdjZObAeXNu6cFLZ_v3QpZbpIPOk9SS_LJoCmAEg9z-bzxXY7xQjjKQEuCaCbbISBq4Iwwm__1ffZuG13qA_ZQ0yMMjFr6tPepHxjUh2aYhOa0NT5NvruYL7zdWzb3MeUL03l8ndXxboJXYjNY3bnzb5140t-yD6Xi4_5a7F-e1nNZ-uiIkx2RUmZdYZZSTEoDxxwyanxSICThrJSOmudZVABwkadG5ZaR51FBDEPhjxkq0HXRrPTxxQOJv3oaIL-A2KqtUldqPZOe6i88U6VTDGqqC1BCC9K7sGWghneaz0NWscUv06u7fQunlLTn68xZ1wKKpHop8gwVaX--eT8dSsgfTZcD4brs-H6YnjPmgys4Jy7MpRgCksgv-UGe2I</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lee, Jwajin</creator><creator>Wang, Yooseung</creator><creator>Cho, Sunyoung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2341-0251</orcidid><orcidid>https://orcid.org/0000-0002-6925-6077</orcidid><orcidid>https://orcid.org/0000-0003-3732-866X</orcidid></search><sort><creationdate>2022</creationdate><title>Angular Margin-Mining Softmax Loss for Face Recognition</title><author>Lee, Jwajin ; Wang, Yooseung ; Cho, Sunyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-b45dea5d84219f1612b64af071e8a45b8edded51c102a9af07d4de4ed0305f1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convolutional neural networks</topic><topic>Deep convolutional neural network</topic><topic>Deep learning</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Measurement</topic><topic>metric-learning and softmax loss function</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jwajin</creatorcontrib><creatorcontrib>Wang, Yooseung</creatorcontrib><creatorcontrib>Cho, Sunyoung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jwajin</au><au>Wang, Yooseung</au><au>Cho, Sunyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angular Margin-Mining Softmax Loss for Face Recognition</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>43071</spage><epage>43080</epage><pages>43071-43080</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Face recognition methods have been significantly improved in recent years owing to the advances made in loss functions. Typically, loss functions are designed to enhance the separability power by concentrating on hard samples in mining-based approaches or by increasing the feature margin between different classes in margin-based approaches. However, margin-based methods lack the utilization of informative hard sample, and mining-based methods also fail to learn the latent correlations between classes. Moreover, there are no methods that simultaneously consider the effects of hard samples and feature margin through the same shape of feature angular margin. Therefore, this paper introduces the Angular Margin-Mining Softmax (AMM-Softmax) loss function, which adaptively emphasizes hard samples while also increasing the decision margins. The proposed AMM-Softmax loss function introduces a linear angular margin for hard samples, enabling the direct optimization of the geodesic distance margin and maximization of class separability. Furthermore, the proposed AMM-Softmax loss function is computationally efficient and can be easily converged by rapidly switching from the hard samples to easy samples. The results of the extensive experimental analyses conducted on popular benchmarks demonstrate the superiority of the proposed AMM-Softmax loss function over the existing state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3168310</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2341-0251</orcidid><orcidid>https://orcid.org/0000-0002-6925-6077</orcidid><orcidid>https://orcid.org/0000-0003-3732-866X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.43071-43080
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9759281
source DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Convolutional neural networks
Deep convolutional neural network
Deep learning
Face recognition
Feature extraction
Measurement
metric-learning and softmax loss function
Optimization
title Angular Margin-Mining Softmax Loss for Face Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angular%20Margin-Mining%20Softmax%20Loss%20for%20Face%20Recognition&rft.jtitle=IEEE%20access&rft.au=Lee,%20Jwajin&rft.date=2022&rft.volume=10&rft.spage=43071&rft.epage=43080&rft.pages=43071-43080&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3168310&rft_dat=%3Cproquest_ieee_%3E2656874807%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656874807&rft_id=info:pmid/&rft_ieee_id=9759281&rft_doaj_id=oai_doaj_org_article_f1cfafe9b595494db177f7b6f1db75a6&rfr_iscdi=true