Video-Based Convolutional Neural Networks Forecasting for Rainfall Forecasting
This study presents a new methodology for improving forecasts of current monthly, regional precipitation using video-based convolutional neural networks (CNNs). Using 13 administrative regions of Great Britain as a case study, three CNN architectures are trained for each region to forecast monthly r...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Barnes, Andrew P. Kjeldsen, Thomas R. McCullen, Nick |
description | This study presents a new methodology for improving forecasts of current monthly, regional precipitation using video-based convolutional neural networks (CNNs). Using 13 administrative regions of Great Britain as a case study, three CNN architectures are trained for each region to forecast monthly rainfall totals given forecast mean sea-level pressure and 2-m air temperature videos from the MetOffice GloSEA5 model and a benchmark rainfall data. The forecasts generated by the CNN and the GloSEA5 precipitation forecasts are both compared directly against a benchmark rainfall dataset for each of the regions. Following this, the CNN models are combined with the GloSEA5 forecasts to generate a new ensemble for each region which is then compared with the benchmark rainfall. The results show that the trained CNNs produce errors similar to the GloSEA5 model with RMSEs of 63 mm (single frame), 44 mm (slow fusion), and 37 mm (early fusion) compared with the GloSEA5 error of 33 mm. Regional variability remained consistent throughout the compared models. However, the CNN models all outperform GloSEA5 in the prediction of extreme events. Furthermore, treating the forecasts as an ensemble results in errors of 32 mm (CNN ensemble) and 31 mm (post-processing ensemble), both of which improve on the independent GloSEA5 forecasts. |
doi_str_mv | 10.1109/LGRS.2022.3167456 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9757818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9757818</ieee_id><sourcerecordid>2656874746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a4e75c7298d689a8fabca7285e6810976071f5c08c1491501b193dc6374ec82c3</originalsourceid><addsrcrecordid>eNpNkFtLAzEQhYMoWKs_QHxZ8Hlr7pk8arFVKBXqBd9Cms3K1nWjya7iv3fXFvHpDDPnDDMfQqcETwjB-mIxX91PKKZ0wohUXMg9NCJCQI6FIvtDzUUuNDwfoqOUNhhTDqBGaPlUFT7kVzb5IpuG5jPUXVuFxtbZ0nfxV9qvEF9TNgvRO5vaqnnJyhCzla2a0tb1_8ExOuhbyZ_sdIweZ9cP05t8cTe_nV4ucseYbHPLvRJOUQ2FBG2htGtnFQXhJfTfKIkVKYXD4AjXRGCyJpoVTjLFvQPq2Bidb_e-x_DR-dSaTehif3UyVAoJiisuexfZulwMKUVfmvdYvdn4bQg2AzYzYDMDNrPD1mfOtpnKe__n10ooIMB-AGQcaK4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656874746</pqid></control><display><type>article</type><title>Video-Based Convolutional Neural Networks Forecasting for Rainfall Forecasting</title><source>IEEE Electronic Library (IEL)</source><creator>Barnes, Andrew P. ; Kjeldsen, Thomas R. ; McCullen, Nick</creator><creatorcontrib>Barnes, Andrew P. ; Kjeldsen, Thomas R. ; McCullen, Nick</creatorcontrib><description>This study presents a new methodology for improving forecasts of current monthly, regional precipitation using video-based convolutional neural networks (CNNs). Using 13 administrative regions of Great Britain as a case study, three CNN architectures are trained for each region to forecast monthly rainfall totals given forecast mean sea-level pressure and 2-m air temperature videos from the MetOffice GloSEA5 model and a benchmark rainfall data. The forecasts generated by the CNN and the GloSEA5 precipitation forecasts are both compared directly against a benchmark rainfall dataset for each of the regions. Following this, the CNN models are combined with the GloSEA5 forecasts to generate a new ensemble for each region which is then compared with the benchmark rainfall. The results show that the trained CNNs produce errors similar to the GloSEA5 model with RMSEs of 63 mm (single frame), 44 mm (slow fusion), and 37 mm (early fusion) compared with the GloSEA5 error of 33 mm. Regional variability remained consistent throughout the compared models. However, the CNN models all outperform GloSEA5 in the prediction of extreme events. Furthermore, treating the forecasts as an ensemble results in errors of 32 mm (CNN ensemble) and 31 mm (post-processing ensemble), both of which improve on the independent GloSEA5 forecasts.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2022.3167456</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Air temperature ; Artificial neural networks ; Atmospheric precipitations ; Benchmark testing ; Benchmarks ; Convolutional neural networks ; Ensemble forecasting ; Errors ; Forecasting ; Hydrologic data ; Mathematical models ; Meteorology ; Modelling ; Monthly rainfall ; Neural networks ; Precipitation ; Precipitation forecasting ; Predictive models ; Rain ; Rainfall ; Rainfall data ; Rainfall forecasting ; Sea level ; Sea level forecasting ; Sea level pressure ; Spatial variations ; Training ; Weather forecasting</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-a4e75c7298d689a8fabca7285e6810976071f5c08c1491501b193dc6374ec82c3</citedby><cites>FETCH-LOGICAL-c336t-a4e75c7298d689a8fabca7285e6810976071f5c08c1491501b193dc6374ec82c3</cites><orcidid>0000-0002-1709-5304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9757818$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,798,4028,27932,27933,27934,54767</link.rule.ids></links><search><creatorcontrib>Barnes, Andrew P.</creatorcontrib><creatorcontrib>Kjeldsen, Thomas R.</creatorcontrib><creatorcontrib>McCullen, Nick</creatorcontrib><title>Video-Based Convolutional Neural Networks Forecasting for Rainfall Forecasting</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>This study presents a new methodology for improving forecasts of current monthly, regional precipitation using video-based convolutional neural networks (CNNs). Using 13 administrative regions of Great Britain as a case study, three CNN architectures are trained for each region to forecast monthly rainfall totals given forecast mean sea-level pressure and 2-m air temperature videos from the MetOffice GloSEA5 model and a benchmark rainfall data. The forecasts generated by the CNN and the GloSEA5 precipitation forecasts are both compared directly against a benchmark rainfall dataset for each of the regions. Following this, the CNN models are combined with the GloSEA5 forecasts to generate a new ensemble for each region which is then compared with the benchmark rainfall. The results show that the trained CNNs produce errors similar to the GloSEA5 model with RMSEs of 63 mm (single frame), 44 mm (slow fusion), and 37 mm (early fusion) compared with the GloSEA5 error of 33 mm. Regional variability remained consistent throughout the compared models. However, the CNN models all outperform GloSEA5 in the prediction of extreme events. Furthermore, treating the forecasts as an ensemble results in errors of 32 mm (CNN ensemble) and 31 mm (post-processing ensemble), both of which improve on the independent GloSEA5 forecasts.</description><subject>Air temperature</subject><subject>Artificial neural networks</subject><subject>Atmospheric precipitations</subject><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>Convolutional neural networks</subject><subject>Ensemble forecasting</subject><subject>Errors</subject><subject>Forecasting</subject><subject>Hydrologic data</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Monthly rainfall</subject><subject>Neural networks</subject><subject>Precipitation</subject><subject>Precipitation forecasting</subject><subject>Predictive models</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall data</subject><subject>Rainfall forecasting</subject><subject>Sea level</subject><subject>Sea level forecasting</subject><subject>Sea level pressure</subject><subject>Spatial variations</subject><subject>Training</subject><subject>Weather forecasting</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkFtLAzEQhYMoWKs_QHxZ8Hlr7pk8arFVKBXqBd9Cms3K1nWjya7iv3fXFvHpDDPnDDMfQqcETwjB-mIxX91PKKZ0wohUXMg9NCJCQI6FIvtDzUUuNDwfoqOUNhhTDqBGaPlUFT7kVzb5IpuG5jPUXVuFxtbZ0nfxV9qvEF9TNgvRO5vaqnnJyhCzla2a0tb1_8ExOuhbyZ_sdIweZ9cP05t8cTe_nV4ucseYbHPLvRJOUQ2FBG2htGtnFQXhJfTfKIkVKYXD4AjXRGCyJpoVTjLFvQPq2Bidb_e-x_DR-dSaTehif3UyVAoJiisuexfZulwMKUVfmvdYvdn4bQg2AzYzYDMDNrPD1mfOtpnKe__n10ooIMB-AGQcaK4</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Barnes, Andrew P.</creator><creator>Kjeldsen, Thomas R.</creator><creator>McCullen, Nick</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1709-5304</orcidid></search><sort><creationdate>2022</creationdate><title>Video-Based Convolutional Neural Networks Forecasting for Rainfall Forecasting</title><author>Barnes, Andrew P. ; Kjeldsen, Thomas R. ; McCullen, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a4e75c7298d689a8fabca7285e6810976071f5c08c1491501b193dc6374ec82c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air temperature</topic><topic>Artificial neural networks</topic><topic>Atmospheric precipitations</topic><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>Convolutional neural networks</topic><topic>Ensemble forecasting</topic><topic>Errors</topic><topic>Forecasting</topic><topic>Hydrologic data</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Monthly rainfall</topic><topic>Neural networks</topic><topic>Precipitation</topic><topic>Precipitation forecasting</topic><topic>Predictive models</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall data</topic><topic>Rainfall forecasting</topic><topic>Sea level</topic><topic>Sea level forecasting</topic><topic>Sea level pressure</topic><topic>Spatial variations</topic><topic>Training</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barnes, Andrew P.</creatorcontrib><creatorcontrib>Kjeldsen, Thomas R.</creatorcontrib><creatorcontrib>McCullen, Nick</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnes, Andrew P.</au><au>Kjeldsen, Thomas R.</au><au>McCullen, Nick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Video-Based Convolutional Neural Networks Forecasting for Rainfall Forecasting</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>This study presents a new methodology for improving forecasts of current monthly, regional precipitation using video-based convolutional neural networks (CNNs). Using 13 administrative regions of Great Britain as a case study, three CNN architectures are trained for each region to forecast monthly rainfall totals given forecast mean sea-level pressure and 2-m air temperature videos from the MetOffice GloSEA5 model and a benchmark rainfall data. The forecasts generated by the CNN and the GloSEA5 precipitation forecasts are both compared directly against a benchmark rainfall dataset for each of the regions. Following this, the CNN models are combined with the GloSEA5 forecasts to generate a new ensemble for each region which is then compared with the benchmark rainfall. The results show that the trained CNNs produce errors similar to the GloSEA5 model with RMSEs of 63 mm (single frame), 44 mm (slow fusion), and 37 mm (early fusion) compared with the GloSEA5 error of 33 mm. Regional variability remained consistent throughout the compared models. However, the CNN models all outperform GloSEA5 in the prediction of extreme events. Furthermore, treating the forecasts as an ensemble results in errors of 32 mm (CNN ensemble) and 31 mm (post-processing ensemble), both of which improve on the independent GloSEA5 forecasts.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2022.3167456</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1709-5304</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_9757818 |
source | IEEE Electronic Library (IEL) |
subjects | Air temperature Artificial neural networks Atmospheric precipitations Benchmark testing Benchmarks Convolutional neural networks Ensemble forecasting Errors Forecasting Hydrologic data Mathematical models Meteorology Modelling Monthly rainfall Neural networks Precipitation Precipitation forecasting Predictive models Rain Rainfall Rainfall data Rainfall forecasting Sea level Sea level forecasting Sea level pressure Spatial variations Training Weather forecasting |
title | Video-Based Convolutional Neural Networks Forecasting for Rainfall Forecasting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A35%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Video-Based%20Convolutional%20Neural%20Networks%20Forecasting%20for%20Rainfall%20Forecasting&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Barnes,%20Andrew%20P.&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2022.3167456&rft_dat=%3Cproquest_ieee_%3E2656874746%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656874746&rft_id=info:pmid/&rft_ieee_id=9757818&rfr_iscdi=true |