Efficient Generative Adversarial Networks for Imbalanced Traffic Collision Datasets

Rapid breakthroughs in information technologies have driven substantial developments in artificial intelligence applications, particularly the widespread use of deep learning techniques in domains such as speech, image and text recognition. However, real world data distribution applications suffer f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-10, Vol.23 (10), p.19864-19873
Hauptverfasser: Chen, Mu-Yen, Chiang, Hsiu-Sen, Huang, Wei-Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19873
container_issue 10
container_start_page 19864
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Chen, Mu-Yen
Chiang, Hsiu-Sen
Huang, Wei-Kai
description Rapid breakthroughs in information technologies have driven substantial developments in artificial intelligence applications, particularly the widespread use of deep learning techniques in domains such as speech, image and text recognition. However, real world data distribution applications suffer from significant problems including data imbalance which can easily lead to machine learning biased towards the side with more data, resulting in inaccurate classification or prediction results. Therefore, effectively addressing data imbalance is a pressing research topic. Generative Adversarial Networks (GAN) addresses data imbalance, but is prone to vanishing gradients. Recent work has thus focused on improving the GAN architecture to resolve this problem. The present research extends these efforts, applying C4.5, Random Forest, Support Vector Machine, K-Nearest Neighbor and Naïve Bayes classification algorithms to a single imbalanced traffic collision dataset to identify methods for improving prediction results. Experimental results show that classification performance significantly improves after data augmentation using Synthetic Minority Oversampling Technique, GAN, Conditional GAN, and Gaussian Discriminant Analysis GAN as compared with the non-augmented dataset. In addition, the Gaussian Discriminant Analysis GAN with Naïve Bayes classifier produces a dataset that optimizes classification performance for traffic accident prediction at highway intersections.
doi_str_mv 10.1109/TITS.2022.3162395
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9756847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9756847</ieee_id><sourcerecordid>2723901806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-767b7912b16709485b0dcf343675f6f14aef15d8607370409cd21dffd939bd103</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN4EvO7MSZqkuRxT52Doxep1SJsEMrt2Jt3Et7dlw6vzc_j-c-BD6B7IDICop3JVbmaUUDpjIChT_AJNgPMiIwTE5ZhpninCyTW6SWk7bHMOMEGbF-9DHVzb46VrXTR9ODo8t0cXk4nBNPjd9T9d_ErYdxGvdpVpTFs7i8toxipedE0TUuha_Gx6k1yfbtGVN01yd-c5RZ-vL-XiLVt_LFeL-TqrqWJ9JoWspAJagZBE5QWviK09y5mQ3AsPuXEeuC0EkUySnKjaUrDeW8VUZYGwKXo83d3H7vvgUq-33SG2w0tN5eCAQEHEQMGJqmOXUnRe72PYmfirgejRnR7d6dGdPrsbOg-nTnDO_fNKclHkkv0BWwZqJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723901806</pqid></control><display><type>article</type><title>Efficient Generative Adversarial Networks for Imbalanced Traffic Collision Datasets</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Mu-Yen ; Chiang, Hsiu-Sen ; Huang, Wei-Kai</creator><creatorcontrib>Chen, Mu-Yen ; Chiang, Hsiu-Sen ; Huang, Wei-Kai</creatorcontrib><description>Rapid breakthroughs in information technologies have driven substantial developments in artificial intelligence applications, particularly the widespread use of deep learning techniques in domains such as speech, image and text recognition. However, real world data distribution applications suffer from significant problems including data imbalance which can easily lead to machine learning biased towards the side with more data, resulting in inaccurate classification or prediction results. Therefore, effectively addressing data imbalance is a pressing research topic. Generative Adversarial Networks (GAN) addresses data imbalance, but is prone to vanishing gradients. Recent work has thus focused on improving the GAN architecture to resolve this problem. The present research extends these efforts, applying C4.5, Random Forest, Support Vector Machine, K-Nearest Neighbor and Naïve Bayes classification algorithms to a single imbalanced traffic collision dataset to identify methods for improving prediction results. Experimental results show that classification performance significantly improves after data augmentation using Synthetic Minority Oversampling Technique, GAN, Conditional GAN, and Gaussian Discriminant Analysis GAN as compared with the non-augmented dataset. In addition, the Gaussian Discriminant Analysis GAN with Naïve Bayes classifier produces a dataset that optimizes classification performance for traffic accident prediction at highway intersections.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3162395</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Classification ; data augmentation ; Data imbalanced ; Data models ; Datasets ; Deep learning ; Discriminant analysis ; GAN ; GDAGAN ; Generative adversarial networks ; Generators ; Highway intersections ; Machine learning ; Object recognition ; Prediction algorithms ; Probability distribution ; Speech recognition ; Support vector machines ; Traffic accidents ; traffic collision ; Traffic information ; Training</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.19864-19873</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-767b7912b16709485b0dcf343675f6f14aef15d8607370409cd21dffd939bd103</citedby><cites>FETCH-LOGICAL-c293t-767b7912b16709485b0dcf343675f6f14aef15d8607370409cd21dffd939bd103</cites><orcidid>0000-0002-3945-4363 ; 0000-0003-0228-6826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9756847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9756847$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Mu-Yen</creatorcontrib><creatorcontrib>Chiang, Hsiu-Sen</creatorcontrib><creatorcontrib>Huang, Wei-Kai</creatorcontrib><title>Efficient Generative Adversarial Networks for Imbalanced Traffic Collision Datasets</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Rapid breakthroughs in information technologies have driven substantial developments in artificial intelligence applications, particularly the widespread use of deep learning techniques in domains such as speech, image and text recognition. However, real world data distribution applications suffer from significant problems including data imbalance which can easily lead to machine learning biased towards the side with more data, resulting in inaccurate classification or prediction results. Therefore, effectively addressing data imbalance is a pressing research topic. Generative Adversarial Networks (GAN) addresses data imbalance, but is prone to vanishing gradients. Recent work has thus focused on improving the GAN architecture to resolve this problem. The present research extends these efforts, applying C4.5, Random Forest, Support Vector Machine, K-Nearest Neighbor and Naïve Bayes classification algorithms to a single imbalanced traffic collision dataset to identify methods for improving prediction results. Experimental results show that classification performance significantly improves after data augmentation using Synthetic Minority Oversampling Technique, GAN, Conditional GAN, and Gaussian Discriminant Analysis GAN as compared with the non-augmented dataset. In addition, the Gaussian Discriminant Analysis GAN with Naïve Bayes classifier produces a dataset that optimizes classification performance for traffic accident prediction at highway intersections.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>data augmentation</subject><subject>Data imbalanced</subject><subject>Data models</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Discriminant analysis</subject><subject>GAN</subject><subject>GDAGAN</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Highway intersections</subject><subject>Machine learning</subject><subject>Object recognition</subject><subject>Prediction algorithms</subject><subject>Probability distribution</subject><subject>Speech recognition</subject><subject>Support vector machines</subject><subject>Traffic accidents</subject><subject>traffic collision</subject><subject>Traffic information</subject><subject>Training</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN4EvO7MSZqkuRxT52Doxep1SJsEMrt2Jt3Et7dlw6vzc_j-c-BD6B7IDICop3JVbmaUUDpjIChT_AJNgPMiIwTE5ZhpninCyTW6SWk7bHMOMEGbF-9DHVzb46VrXTR9ODo8t0cXk4nBNPjd9T9d_ErYdxGvdpVpTFs7i8toxipedE0TUuha_Gx6k1yfbtGVN01yd-c5RZ-vL-XiLVt_LFeL-TqrqWJ9JoWspAJagZBE5QWviK09y5mQ3AsPuXEeuC0EkUySnKjaUrDeW8VUZYGwKXo83d3H7vvgUq-33SG2w0tN5eCAQEHEQMGJqmOXUnRe72PYmfirgejRnR7d6dGdPrsbOg-nTnDO_fNKclHkkv0BWwZqJA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Chen, Mu-Yen</creator><creator>Chiang, Hsiu-Sen</creator><creator>Huang, Wei-Kai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3945-4363</orcidid><orcidid>https://orcid.org/0000-0003-0228-6826</orcidid></search><sort><creationdate>20221001</creationdate><title>Efficient Generative Adversarial Networks for Imbalanced Traffic Collision Datasets</title><author>Chen, Mu-Yen ; Chiang, Hsiu-Sen ; Huang, Wei-Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-767b7912b16709485b0dcf343675f6f14aef15d8607370409cd21dffd939bd103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>data augmentation</topic><topic>Data imbalanced</topic><topic>Data models</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Discriminant analysis</topic><topic>GAN</topic><topic>GDAGAN</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Highway intersections</topic><topic>Machine learning</topic><topic>Object recognition</topic><topic>Prediction algorithms</topic><topic>Probability distribution</topic><topic>Speech recognition</topic><topic>Support vector machines</topic><topic>Traffic accidents</topic><topic>traffic collision</topic><topic>Traffic information</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Mu-Yen</creatorcontrib><creatorcontrib>Chiang, Hsiu-Sen</creatorcontrib><creatorcontrib>Huang, Wei-Kai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Mu-Yen</au><au>Chiang, Hsiu-Sen</au><au>Huang, Wei-Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Generative Adversarial Networks for Imbalanced Traffic Collision Datasets</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>23</volume><issue>10</issue><spage>19864</spage><epage>19873</epage><pages>19864-19873</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Rapid breakthroughs in information technologies have driven substantial developments in artificial intelligence applications, particularly the widespread use of deep learning techniques in domains such as speech, image and text recognition. However, real world data distribution applications suffer from significant problems including data imbalance which can easily lead to machine learning biased towards the side with more data, resulting in inaccurate classification or prediction results. Therefore, effectively addressing data imbalance is a pressing research topic. Generative Adversarial Networks (GAN) addresses data imbalance, but is prone to vanishing gradients. Recent work has thus focused on improving the GAN architecture to resolve this problem. The present research extends these efforts, applying C4.5, Random Forest, Support Vector Machine, K-Nearest Neighbor and Naïve Bayes classification algorithms to a single imbalanced traffic collision dataset to identify methods for improving prediction results. Experimental results show that classification performance significantly improves after data augmentation using Synthetic Minority Oversampling Technique, GAN, Conditional GAN, and Gaussian Discriminant Analysis GAN as compared with the non-augmented dataset. In addition, the Gaussian Discriminant Analysis GAN with Naïve Bayes classifier produces a dataset that optimizes classification performance for traffic accident prediction at highway intersections.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3162395</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3945-4363</orcidid><orcidid>https://orcid.org/0000-0003-0228-6826</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.19864-19873
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_9756847
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial intelligence
Classification
data augmentation
Data imbalanced
Data models
Datasets
Deep learning
Discriminant analysis
GAN
GDAGAN
Generative adversarial networks
Generators
Highway intersections
Machine learning
Object recognition
Prediction algorithms
Probability distribution
Speech recognition
Support vector machines
Traffic accidents
traffic collision
Traffic information
Training
title Efficient Generative Adversarial Networks for Imbalanced Traffic Collision Datasets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Generative%20Adversarial%20Networks%20for%20Imbalanced%20Traffic%20Collision%20Datasets&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Chen,%20Mu-Yen&rft.date=2022-10-01&rft.volume=23&rft.issue=10&rft.spage=19864&rft.epage=19873&rft.pages=19864-19873&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3162395&rft_dat=%3Cproquest_RIE%3E2723901806%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723901806&rft_id=info:pmid/&rft_ieee_id=9756847&rfr_iscdi=true