Surface Electromyography as a Natural Human-Machine Interface: A Review
Surface electromyography (sEMG) is a non-invasive method of measuring neuromuscular potentials generated when the brain instructs the body to perform both fine and coarse locomotion. This technique has seen extensive investigation over the last two decades, with significant advances in both the hard...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2022-05, Vol.22 (10), p.9198-9214 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9214 |
---|---|
container_issue | 10 |
container_start_page | 9198 |
container_title | IEEE sensors journal |
container_volume | 22 |
creator | Zheng, Mingde Crouch, Michael S. Eggleston, Michael S. |
description | Surface electromyography (sEMG) is a non-invasive method of measuring neuromuscular potentials generated when the brain instructs the body to perform both fine and coarse locomotion. This technique has seen extensive investigation over the last two decades, with significant advances in both the hardware and signal processing methods used to collect and analyze sEMG signals. While early work focused mainly on medical applications, there has been growing interest in utilizing sEMG as a sensing modality to enable next-generation, high-bandwidth, and natural human-machine interfaces. In the first part of this review, we briefly overview the human skeletomuscular physiology that gives rise to sEMG signals followed by a review of developments in sEMG acquisition hardware. Special attention is paid towards the fidelity of these devices as well as form factor, as recent advances have pushed the limits of user comfort and high-bandwidth acquisition. In the second half of the article, we explore work quantifying the information content of natural human gestures and then review the various signal processing and machine learning methods developed to extract information in sEMG signals. Finally, we discuss the future outlook in this field, highlighting the key gaps in current methods to enable seamless natural interactions between humans and machines. |
doi_str_mv | 10.1109/JSEN.2022.3165988 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9751758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9751758</ieee_id><sourcerecordid>2663643541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-3b8c7e10d6f0abe4eae2d74e67e7aaae75b76cdd32c091b956f71847f3b510833</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQQBdRsFZ_gHhZ8Jy6k81-xFsp_ZJawSp4WzabiU1pk7pJlP57E1s8zRzem4FHyC2wAQCLH55W4-UgZGE44CBFrPUZ6YEQOgAV6fNu5yyIuPq4JFdVtWEMYiVUj0xXjc-sQzreoqt9uTuUn97u1wdqK2rp0taNt1s6a3a2CJ6tW-cF0nlR45_1SIf0Fb9z_LkmF5ndVnhzmn3yPhm_jWbB4mU6Hw0XgQsV1AFPtFMILJUZswlGaDFMVYRSobLWohKJki5NeehYDEksZKZARyrjiQCmOe-T--PdvS-_GqxqsykbX7QvTSgllxEXEbQUHCnny6rymJm9z3fWHwww0_UyXS_T9TKnXq1zd3RyRPzn20qghOa_21JmNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663643541</pqid></control><display><type>article</type><title>Surface Electromyography as a Natural Human-Machine Interface: A Review</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Mingde ; Crouch, Michael S. ; Eggleston, Michael S.</creator><creatorcontrib>Zheng, Mingde ; Crouch, Michael S. ; Eggleston, Michael S.</creatorcontrib><description>Surface electromyography (sEMG) is a non-invasive method of measuring neuromuscular potentials generated when the brain instructs the body to perform both fine and coarse locomotion. This technique has seen extensive investigation over the last two decades, with significant advances in both the hardware and signal processing methods used to collect and analyze sEMG signals. While early work focused mainly on medical applications, there has been growing interest in utilizing sEMG as a sensing modality to enable next-generation, high-bandwidth, and natural human-machine interfaces. In the first part of this review, we briefly overview the human skeletomuscular physiology that gives rise to sEMG signals followed by a review of developments in sEMG acquisition hardware. Special attention is paid towards the fidelity of these devices as well as form factor, as recent advances have pushed the limits of user comfort and high-bandwidth acquisition. In the second half of the article, we explore work quantifying the information content of natural human gestures and then review the various signal processing and machine learning methods developed to extract information in sEMG signals. Finally, we discuss the future outlook in this field, highlighting the key gaps in current methods to enable seamless natural interactions between humans and machines.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3165988</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data analytics ; Electrodes ; Electromyography ; Form factors ; Hardware ; human-machine interface ; Locomotion ; Machine learning ; Man-machine interfaces ; Measurement methods ; Muscles ; myoelectrics ; natural interface ; Optical fiber sensors ; Sensors ; Signal processing ; Skin ; surface electromyography</subject><ispartof>IEEE sensors journal, 2022-05, Vol.22 (10), p.9198-9214</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-3b8c7e10d6f0abe4eae2d74e67e7aaae75b76cdd32c091b956f71847f3b510833</citedby><cites>FETCH-LOGICAL-c271t-3b8c7e10d6f0abe4eae2d74e67e7aaae75b76cdd32c091b956f71847f3b510833</cites><orcidid>0000-0002-6792-2363 ; 0000-0003-2802-3995 ; 0000-0002-2255-4966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9751758$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9751758$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Mingde</creatorcontrib><creatorcontrib>Crouch, Michael S.</creatorcontrib><creatorcontrib>Eggleston, Michael S.</creatorcontrib><title>Surface Electromyography as a Natural Human-Machine Interface: A Review</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Surface electromyography (sEMG) is a non-invasive method of measuring neuromuscular potentials generated when the brain instructs the body to perform both fine and coarse locomotion. This technique has seen extensive investigation over the last two decades, with significant advances in both the hardware and signal processing methods used to collect and analyze sEMG signals. While early work focused mainly on medical applications, there has been growing interest in utilizing sEMG as a sensing modality to enable next-generation, high-bandwidth, and natural human-machine interfaces. In the first part of this review, we briefly overview the human skeletomuscular physiology that gives rise to sEMG signals followed by a review of developments in sEMG acquisition hardware. Special attention is paid towards the fidelity of these devices as well as form factor, as recent advances have pushed the limits of user comfort and high-bandwidth acquisition. In the second half of the article, we explore work quantifying the information content of natural human gestures and then review the various signal processing and machine learning methods developed to extract information in sEMG signals. Finally, we discuss the future outlook in this field, highlighting the key gaps in current methods to enable seamless natural interactions between humans and machines.</description><subject>Data analytics</subject><subject>Electrodes</subject><subject>Electromyography</subject><subject>Form factors</subject><subject>Hardware</subject><subject>human-machine interface</subject><subject>Locomotion</subject><subject>Machine learning</subject><subject>Man-machine interfaces</subject><subject>Measurement methods</subject><subject>Muscles</subject><subject>myoelectrics</subject><subject>natural interface</subject><subject>Optical fiber sensors</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Skin</subject><subject>surface electromyography</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQQBdRsFZ_gHhZ8Jy6k81-xFsp_ZJawSp4WzabiU1pk7pJlP57E1s8zRzem4FHyC2wAQCLH55W4-UgZGE44CBFrPUZ6YEQOgAV6fNu5yyIuPq4JFdVtWEMYiVUj0xXjc-sQzreoqt9uTuUn97u1wdqK2rp0taNt1s6a3a2CJ6tW-cF0nlR45_1SIf0Fb9z_LkmF5ndVnhzmn3yPhm_jWbB4mU6Hw0XgQsV1AFPtFMILJUZswlGaDFMVYRSobLWohKJki5NeehYDEksZKZARyrjiQCmOe-T--PdvS-_GqxqsykbX7QvTSgllxEXEbQUHCnny6rymJm9z3fWHwww0_UyXS_T9TKnXq1zd3RyRPzn20qghOa_21JmNw</recordid><startdate>20220515</startdate><enddate>20220515</enddate><creator>Zheng, Mingde</creator><creator>Crouch, Michael S.</creator><creator>Eggleston, Michael S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6792-2363</orcidid><orcidid>https://orcid.org/0000-0003-2802-3995</orcidid><orcidid>https://orcid.org/0000-0002-2255-4966</orcidid></search><sort><creationdate>20220515</creationdate><title>Surface Electromyography as a Natural Human-Machine Interface: A Review</title><author>Zheng, Mingde ; Crouch, Michael S. ; Eggleston, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-3b8c7e10d6f0abe4eae2d74e67e7aaae75b76cdd32c091b956f71847f3b510833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data analytics</topic><topic>Electrodes</topic><topic>Electromyography</topic><topic>Form factors</topic><topic>Hardware</topic><topic>human-machine interface</topic><topic>Locomotion</topic><topic>Machine learning</topic><topic>Man-machine interfaces</topic><topic>Measurement methods</topic><topic>Muscles</topic><topic>myoelectrics</topic><topic>natural interface</topic><topic>Optical fiber sensors</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Skin</topic><topic>surface electromyography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Mingde</creatorcontrib><creatorcontrib>Crouch, Michael S.</creatorcontrib><creatorcontrib>Eggleston, Michael S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Mingde</au><au>Crouch, Michael S.</au><au>Eggleston, Michael S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Electromyography as a Natural Human-Machine Interface: A Review</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-05-15</date><risdate>2022</risdate><volume>22</volume><issue>10</issue><spage>9198</spage><epage>9214</epage><pages>9198-9214</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Surface electromyography (sEMG) is a non-invasive method of measuring neuromuscular potentials generated when the brain instructs the body to perform both fine and coarse locomotion. This technique has seen extensive investigation over the last two decades, with significant advances in both the hardware and signal processing methods used to collect and analyze sEMG signals. While early work focused mainly on medical applications, there has been growing interest in utilizing sEMG as a sensing modality to enable next-generation, high-bandwidth, and natural human-machine interfaces. In the first part of this review, we briefly overview the human skeletomuscular physiology that gives rise to sEMG signals followed by a review of developments in sEMG acquisition hardware. Special attention is paid towards the fidelity of these devices as well as form factor, as recent advances have pushed the limits of user comfort and high-bandwidth acquisition. In the second half of the article, we explore work quantifying the information content of natural human gestures and then review the various signal processing and machine learning methods developed to extract information in sEMG signals. Finally, we discuss the future outlook in this field, highlighting the key gaps in current methods to enable seamless natural interactions between humans and machines.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3165988</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6792-2363</orcidid><orcidid>https://orcid.org/0000-0003-2802-3995</orcidid><orcidid>https://orcid.org/0000-0002-2255-4966</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2022-05, Vol.22 (10), p.9198-9214 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9751758 |
source | IEEE Electronic Library (IEL) |
subjects | Data analytics Electrodes Electromyography Form factors Hardware human-machine interface Locomotion Machine learning Man-machine interfaces Measurement methods Muscles myoelectrics natural interface Optical fiber sensors Sensors Signal processing Skin surface electromyography |
title | Surface Electromyography as a Natural Human-Machine Interface: A Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Electromyography%20as%20a%20Natural%20Human-Machine%20Interface:%20A%20Review&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zheng,%20Mingde&rft.date=2022-05-15&rft.volume=22&rft.issue=10&rft.spage=9198&rft.epage=9214&rft.pages=9198-9214&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3165988&rft_dat=%3Cproquest_RIE%3E2663643541%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663643541&rft_id=info:pmid/&rft_ieee_id=9751758&rfr_iscdi=true |