Surface Electromyography as a Natural Human-Machine Interface: A Review

Surface electromyography (sEMG) is a non-invasive method of measuring neuromuscular potentials generated when the brain instructs the body to perform both fine and coarse locomotion. This technique has seen extensive investigation over the last two decades, with significant advances in both the hard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2022-05, Vol.22 (10), p.9198-9214
Hauptverfasser: Zheng, Mingde, Crouch, Michael S., Eggleston, Michael S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9214
container_issue 10
container_start_page 9198
container_title IEEE sensors journal
container_volume 22
creator Zheng, Mingde
Crouch, Michael S.
Eggleston, Michael S.
description Surface electromyography (sEMG) is a non-invasive method of measuring neuromuscular potentials generated when the brain instructs the body to perform both fine and coarse locomotion. This technique has seen extensive investigation over the last two decades, with significant advances in both the hardware and signal processing methods used to collect and analyze sEMG signals. While early work focused mainly on medical applications, there has been growing interest in utilizing sEMG as a sensing modality to enable next-generation, high-bandwidth, and natural human-machine interfaces. In the first part of this review, we briefly overview the human skeletomuscular physiology that gives rise to sEMG signals followed by a review of developments in sEMG acquisition hardware. Special attention is paid towards the fidelity of these devices as well as form factor, as recent advances have pushed the limits of user comfort and high-bandwidth acquisition. In the second half of the article, we explore work quantifying the information content of natural human gestures and then review the various signal processing and machine learning methods developed to extract information in sEMG signals. Finally, we discuss the future outlook in this field, highlighting the key gaps in current methods to enable seamless natural interactions between humans and machines.
doi_str_mv 10.1109/JSEN.2022.3165988
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9751758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9751758</ieee_id><sourcerecordid>2663643541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-3b8c7e10d6f0abe4eae2d74e67e7aaae75b76cdd32c091b956f71847f3b510833</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQQBdRsFZ_gHhZ8Jy6k81-xFsp_ZJawSp4WzabiU1pk7pJlP57E1s8zRzem4FHyC2wAQCLH55W4-UgZGE44CBFrPUZ6YEQOgAV6fNu5yyIuPq4JFdVtWEMYiVUj0xXjc-sQzreoqt9uTuUn97u1wdqK2rp0taNt1s6a3a2CJ6tW-cF0nlR45_1SIf0Fb9z_LkmF5ndVnhzmn3yPhm_jWbB4mU6Hw0XgQsV1AFPtFMILJUZswlGaDFMVYRSobLWohKJki5NeehYDEksZKZARyrjiQCmOe-T--PdvS-_GqxqsykbX7QvTSgllxEXEbQUHCnny6rymJm9z3fWHwww0_UyXS_T9TKnXq1zd3RyRPzn20qghOa_21JmNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663643541</pqid></control><display><type>article</type><title>Surface Electromyography as a Natural Human-Machine Interface: A Review</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Mingde ; Crouch, Michael S. ; Eggleston, Michael S.</creator><creatorcontrib>Zheng, Mingde ; Crouch, Michael S. ; Eggleston, Michael S.</creatorcontrib><description>Surface electromyography (sEMG) is a non-invasive method of measuring neuromuscular potentials generated when the brain instructs the body to perform both fine and coarse locomotion. This technique has seen extensive investigation over the last two decades, with significant advances in both the hardware and signal processing methods used to collect and analyze sEMG signals. While early work focused mainly on medical applications, there has been growing interest in utilizing sEMG as a sensing modality to enable next-generation, high-bandwidth, and natural human-machine interfaces. In the first part of this review, we briefly overview the human skeletomuscular physiology that gives rise to sEMG signals followed by a review of developments in sEMG acquisition hardware. Special attention is paid towards the fidelity of these devices as well as form factor, as recent advances have pushed the limits of user comfort and high-bandwidth acquisition. In the second half of the article, we explore work quantifying the information content of natural human gestures and then review the various signal processing and machine learning methods developed to extract information in sEMG signals. Finally, we discuss the future outlook in this field, highlighting the key gaps in current methods to enable seamless natural interactions between humans and machines.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3165988</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data analytics ; Electrodes ; Electromyography ; Form factors ; Hardware ; human-machine interface ; Locomotion ; Machine learning ; Man-machine interfaces ; Measurement methods ; Muscles ; myoelectrics ; natural interface ; Optical fiber sensors ; Sensors ; Signal processing ; Skin ; surface electromyography</subject><ispartof>IEEE sensors journal, 2022-05, Vol.22 (10), p.9198-9214</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-3b8c7e10d6f0abe4eae2d74e67e7aaae75b76cdd32c091b956f71847f3b510833</citedby><cites>FETCH-LOGICAL-c271t-3b8c7e10d6f0abe4eae2d74e67e7aaae75b76cdd32c091b956f71847f3b510833</cites><orcidid>0000-0002-6792-2363 ; 0000-0003-2802-3995 ; 0000-0002-2255-4966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9751758$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9751758$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Mingde</creatorcontrib><creatorcontrib>Crouch, Michael S.</creatorcontrib><creatorcontrib>Eggleston, Michael S.</creatorcontrib><title>Surface Electromyography as a Natural Human-Machine Interface: A Review</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Surface electromyography (sEMG) is a non-invasive method of measuring neuromuscular potentials generated when the brain instructs the body to perform both fine and coarse locomotion. This technique has seen extensive investigation over the last two decades, with significant advances in both the hardware and signal processing methods used to collect and analyze sEMG signals. While early work focused mainly on medical applications, there has been growing interest in utilizing sEMG as a sensing modality to enable next-generation, high-bandwidth, and natural human-machine interfaces. In the first part of this review, we briefly overview the human skeletomuscular physiology that gives rise to sEMG signals followed by a review of developments in sEMG acquisition hardware. Special attention is paid towards the fidelity of these devices as well as form factor, as recent advances have pushed the limits of user comfort and high-bandwidth acquisition. In the second half of the article, we explore work quantifying the information content of natural human gestures and then review the various signal processing and machine learning methods developed to extract information in sEMG signals. Finally, we discuss the future outlook in this field, highlighting the key gaps in current methods to enable seamless natural interactions between humans and machines.</description><subject>Data analytics</subject><subject>Electrodes</subject><subject>Electromyography</subject><subject>Form factors</subject><subject>Hardware</subject><subject>human-machine interface</subject><subject>Locomotion</subject><subject>Machine learning</subject><subject>Man-machine interfaces</subject><subject>Measurement methods</subject><subject>Muscles</subject><subject>myoelectrics</subject><subject>natural interface</subject><subject>Optical fiber sensors</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Skin</subject><subject>surface electromyography</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQQBdRsFZ_gHhZ8Jy6k81-xFsp_ZJawSp4WzabiU1pk7pJlP57E1s8zRzem4FHyC2wAQCLH55W4-UgZGE44CBFrPUZ6YEQOgAV6fNu5yyIuPq4JFdVtWEMYiVUj0xXjc-sQzreoqt9uTuUn97u1wdqK2rp0taNt1s6a3a2CJ6tW-cF0nlR45_1SIf0Fb9z_LkmF5ndVnhzmn3yPhm_jWbB4mU6Hw0XgQsV1AFPtFMILJUZswlGaDFMVYRSobLWohKJki5NeehYDEksZKZARyrjiQCmOe-T--PdvS-_GqxqsykbX7QvTSgllxEXEbQUHCnny6rymJm9z3fWHwww0_UyXS_T9TKnXq1zd3RyRPzn20qghOa_21JmNw</recordid><startdate>20220515</startdate><enddate>20220515</enddate><creator>Zheng, Mingde</creator><creator>Crouch, Michael S.</creator><creator>Eggleston, Michael S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6792-2363</orcidid><orcidid>https://orcid.org/0000-0003-2802-3995</orcidid><orcidid>https://orcid.org/0000-0002-2255-4966</orcidid></search><sort><creationdate>20220515</creationdate><title>Surface Electromyography as a Natural Human-Machine Interface: A Review</title><author>Zheng, Mingde ; Crouch, Michael S. ; Eggleston, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-3b8c7e10d6f0abe4eae2d74e67e7aaae75b76cdd32c091b956f71847f3b510833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data analytics</topic><topic>Electrodes</topic><topic>Electromyography</topic><topic>Form factors</topic><topic>Hardware</topic><topic>human-machine interface</topic><topic>Locomotion</topic><topic>Machine learning</topic><topic>Man-machine interfaces</topic><topic>Measurement methods</topic><topic>Muscles</topic><topic>myoelectrics</topic><topic>natural interface</topic><topic>Optical fiber sensors</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Skin</topic><topic>surface electromyography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Mingde</creatorcontrib><creatorcontrib>Crouch, Michael S.</creatorcontrib><creatorcontrib>Eggleston, Michael S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Mingde</au><au>Crouch, Michael S.</au><au>Eggleston, Michael S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Electromyography as a Natural Human-Machine Interface: A Review</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-05-15</date><risdate>2022</risdate><volume>22</volume><issue>10</issue><spage>9198</spage><epage>9214</epage><pages>9198-9214</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Surface electromyography (sEMG) is a non-invasive method of measuring neuromuscular potentials generated when the brain instructs the body to perform both fine and coarse locomotion. This technique has seen extensive investigation over the last two decades, with significant advances in both the hardware and signal processing methods used to collect and analyze sEMG signals. While early work focused mainly on medical applications, there has been growing interest in utilizing sEMG as a sensing modality to enable next-generation, high-bandwidth, and natural human-machine interfaces. In the first part of this review, we briefly overview the human skeletomuscular physiology that gives rise to sEMG signals followed by a review of developments in sEMG acquisition hardware. Special attention is paid towards the fidelity of these devices as well as form factor, as recent advances have pushed the limits of user comfort and high-bandwidth acquisition. In the second half of the article, we explore work quantifying the information content of natural human gestures and then review the various signal processing and machine learning methods developed to extract information in sEMG signals. Finally, we discuss the future outlook in this field, highlighting the key gaps in current methods to enable seamless natural interactions between humans and machines.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3165988</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6792-2363</orcidid><orcidid>https://orcid.org/0000-0003-2802-3995</orcidid><orcidid>https://orcid.org/0000-0002-2255-4966</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-05, Vol.22 (10), p.9198-9214
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9751758
source IEEE Electronic Library (IEL)
subjects Data analytics
Electrodes
Electromyography
Form factors
Hardware
human-machine interface
Locomotion
Machine learning
Man-machine interfaces
Measurement methods
Muscles
myoelectrics
natural interface
Optical fiber sensors
Sensors
Signal processing
Skin
surface electromyography
title Surface Electromyography as a Natural Human-Machine Interface: A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Electromyography%20as%20a%20Natural%20Human-Machine%20Interface:%20A%20Review&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zheng,%20Mingde&rft.date=2022-05-15&rft.volume=22&rft.issue=10&rft.spage=9198&rft.epage=9214&rft.pages=9198-9214&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3165988&rft_dat=%3Cproquest_RIE%3E2663643541%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663643541&rft_id=info:pmid/&rft_ieee_id=9751758&rfr_iscdi=true